Suppr超能文献

考虑一阶条件(FO)和条件期望一阶估计(FOCE)的药代动力学-药效学模型的同步与序贯最优设计

Simultaneous versus sequential optimal design for pharmacokinetic-pharmacodynamic models with FO and FOCE considerations.

作者信息

McGree J M, Eccleston J A, Duffull S B

机构信息

University of Queensland, St. Lucia, Brisbane, Australia.

出版信息

J Pharmacokinet Pharmacodyn. 2009 Apr;36(2):101-23. doi: 10.1007/s10928-009-9113-0. Epub 2009 Feb 18.

Abstract

We consider nested multiple response models which are used extensively in the area of pharmacometrics. Given the conditional nature of such models, differences in predicted responses are a consequence of different assumptions about how the models interact. As such, sequential versus simultaneous and First Order (FO) versus First Order Conditional Estimation (FOCE) techniques have been explored in the literature where it was found that the sequential and FO approaches can produce biased results. It is therefore of interest to determine any design consequences between the various methods and approximations. As optimal design for nonlinear mixed effects models is dependent upon initial parameter estimates and an approximation to the expected Fisher information matrix, it is necessary to incorporate any influence of nonlinearity (or parameter-effects curvature) into our exploration. Hence, sequential versus simultaneous design with FO and FOCE considerations are compared under low, typical and high degrees of nonlinearity. Additionally, predicted standard errors of parameters are also compared to empirical estimates formed via a simulation/estimation study in NONMEM. Initially, design theory for nested multiple response models is developed and approaches mentioned above are investigated by considering a pharmacokinetic-pharmacodynamic model found in the literature. We consider design for situations where all responses are continuous and extend this methodology to the case where a response may be a discrete random variable. In particular, for a binary response pharmacodynamic model, it is conjectured that such responses will offer little information about all parameters and hence a sequential optimization, in the form of product design optimality, may yield near optimal designs.

摘要

我们考虑在药代动力学领域广泛使用的嵌套多重响应模型。鉴于此类模型的条件性质,预测响应的差异是关于模型如何相互作用的不同假设的结果。因此,文献中探讨了顺序与同时以及一阶(FO)与一阶条件估计(FOCE)技术,结果发现顺序和FO方法可能会产生有偏差的结果。因此,确定各种方法和近似之间的任何设计后果是很有意义的。由于非线性混合效应模型的最优设计取决于初始参数估计和预期费舍尔信息矩阵的近似,有必要将非线性(或参数效应曲率)的任何影响纳入我们的探索中。因此,在低、典型和高非线性程度下,比较了考虑FO和FOCE的顺序设计与同时设计。此外,还将参数的预测标准误差与通过NONMEM中的模拟/估计研究形成的经验估计进行了比较。首先,开发了嵌套多重响应模型的设计理论,并通过考虑文献中发现的药代动力学-药效学模型来研究所提及的方法。我们考虑所有响应均为连续的情况的设计,并将此方法扩展到响应可能是离散随机变量的情况。特别是,对于二元响应药效学模型,推测此类响应将提供关于所有参数的很少信息,因此以乘积设计最优性形式的顺序优化可能会产生接近最优的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验