Suppr超能文献

功能模块中动态网络拓扑变化可预测酵母对氧化应激的反应。

Dynamic network topology changes in functional modules predict responses to oxidative stress in yeast.

作者信息

Gopalacharyulu Peddinti V, Velagapudi Vidya R, Lindfors Erno, Halperin Eran, Oresic Matej

机构信息

VTT Technical Research Centre of Finland, P.O. Box 1000, Espoo, FI-02044 VTT, Finland.

出版信息

Mol Biosyst. 2009 Mar;5(3):276-87. doi: 10.1039/b815347g. Epub 2009 Jan 19.

Abstract

In response to environmental challenges, biological systems respond with dynamic adaptive changes in order to maintain the functionality of the system. Such adaptations may lead to cumulative stress over time, possibly leading to global failure of the system. When studying such systems responses, it is therefore important to understand them in system-wide and dynamic context. Here we hypothesize that dynamic changes in the topology of functional modules of integrated biological networks reflect their activity under specific environmental challenges. We introduce topological enrichment analysis of functional subnetworks (TEAFS), a method for the analysis of integrated molecular profile and interactome data, which we validated by comprehensive metabolomic analysis of dynamic yeast response under oxidative stress. TEAFS identified activation of multiple stress response related mechanisms, such as lipid metabolism and phospholipid biosynthesis. We identified, among others, a fatty acid elongase IFA38 as a hub protein which was absent at all time points under oxidative stress conditions. The deletion mutant of the IFA38 encoding gene is known for the accumulation of ceramides. By applying a comprehensive metabolomic analysis, we confirmed the increased concentrations over time of ceramides and palmitic acid, a precursor of de novo ceramide biosynthesis. Our results imply that the connectivity of the system is being dynamically modulated in response to oxidative stress, progressively leading to the accumulation of (lipo)toxic lipids such as ceramides. Studies of local network topology dynamics can be used to investigate as well as predict the activity of biological processes and the system's responses to environmental challenges and interventions.

摘要

为应对环境挑战,生物系统会通过动态适应性变化做出反应,以维持系统的功能。随着时间的推移,这种适应可能会导致累积性压力,进而可能导致系统全面失效。因此,在研究此类系统反应时,从全系统和动态的角度去理解它们非常重要。在此,我们假设整合生物网络功能模块拓扑结构的动态变化反映了它们在特定环境挑战下的活性。我们引入了功能子网的拓扑富集分析(TEAFS),这是一种用于分析整合分子谱和相互作用组数据的方法,我们通过对氧化应激下酵母动态反应的综合代谢组学分析对其进行了验证。TEAFS确定了多种应激反应相关机制的激活,如脂质代谢和磷脂生物合成。我们特别鉴定出脂肪酸延长酶IFA38是一种枢纽蛋白,在氧化应激条件下的所有时间点均不存在。已知编码IFA38的基因的缺失突变体中神经酰胺会积累。通过应用综合代谢组学分析,我们证实了神经酰胺和从头合成神经酰胺的前体棕榈酸的浓度随时间增加。我们的结果表明,系统的连通性正在响应氧化应激而动态调节,逐渐导致(脂)毒性脂质如神经酰胺的积累。对局部网络拓扑动力学的研究可用于调查和预测生物过程的活性以及系统对环境挑战和干预的反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验