Department of Biochemistry, National University of Singapore, Singapore, Singapore.
PLoS One. 2010 Aug 4;5(8):e11956. doi: 10.1371/journal.pone.0011956.
Phosphatidic acid (PA) is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA) by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase, LPAAT). Recent findings have substantiated the essential roles of acyltransferases in various biological functions.
METHODOLOGIES/PRINCIPAL FINDINGS: We used a flow-injection-based lipidomic approach with approximately 200 multiple reaction monitoring (MRM) transitions to pre-screen fatty acyl composition of phospholipids in the yeast Saccharomyces cerevisiae mutants. Dramatic changes were observed in fatty acyl composition in some yeast mutants including Slc1p, a well-characterized LPAAT, and Cst26p, a recently characterized phosphatidylinositol stearoyl incorporating 1 protein and putative LPAAT in S. cerevisiae. A comprehensive high-performance liquid chromatography-based multi-stage MRM approach (more than 500 MRM transitions) was developed and further applied to quantify individual phospholipids in both strains to confirm these changes. Our data suggest potential fatty acyl substrates as well as fatty acyls that compensate for defects in both Cst26p and Slc1p mutants. These results were consistent with those from a non-radioactive LPAAT enzymatic assay using C17-LPA and acyl-CoA donors as substrates.
We found that Slc1p utilized fatty acid (FA) 18:1 and FA 14:0 as substrates to synthesize corresponding PAs; moreover, it was probably the only acyltransferase responsible for acylation of saturated short-chain fatty acyls (12:0 and 10:0) in S. cerevisiae. We also identified FA 18:0, FA 16:0, FA 14:0 and exogenous FA 17:0 as preferred substrates for Cst26p because transformation with a GFP-tagged CST26 restored the phospholipid profile of a CST26 mutant. Our current findings expand the enzymes and existing scope of acyl-CoA donors for glycerophospholipid biosynthesis.
磷脂酸(PA)是从头合成所有甘油磷脂的关键调节中间产物和前体。PA 可以通过 1-酰基-3-磷酸酰基转移酶(也称为溶血磷脂酸酰基转移酶,LPAAT)将溶血磷脂酸(LPA)酰化来合成。最近的发现证实了酰基转移酶在各种生物功能中的重要作用。
方法/主要发现:我们使用基于流动注射的脂质组学方法,使用大约 200 个多重反应监测(MRM)转换来预先筛选酵母酿酒酵母突变体中磷脂的脂肪酸酰基组成。在一些酵母突变体中,包括 Slc1p(一种经过充分研究的 LPAAT)和 Cst26p(一种最近被描述的磷酸肌醇硬脂酰掺入 1 蛋白和 S. cerevisiae 中的推定 LPAAT),观察到脂肪酸酰基组成发生了巨大变化。开发了一种全面的基于高效液相色谱的多阶段 MRM 方法(超过 500 个 MRM 转换),并进一步应用于两种菌株中单个磷脂的定量,以确认这些变化。我们的数据表明,潜在的脂肪酸酰基底物以及弥补 Cst26p 和 Slc1p 突变体缺陷的脂肪酸酰基。这些结果与使用 C17-LPA 和酰基辅酶 A 供体作为底物的非放射性 LPAAT 酶测定结果一致。
我们发现 Slc1p 利用脂肪酸(FA)18:1 和 FA 14:0 作为合成相应 PA 的底物;此外,它可能是唯一负责酰化酵母 S. cerevisiae 中饱和短链脂肪酸(12:0 和 10:0)的酰基转移酶。我们还确定 FA 18:0、FA 16:0、FA 14:0 和外源性 FA 17:0 是 Cst26p 的首选底物,因为 GFP 标记的 CST26 的转化恢复了 CST26 突变体的磷脂谱。我们目前的发现扩展了甘油磷脂生物合成的酶和现有的酰基辅酶 A 供体范围。