Suppr超能文献

运动系统中的参数神经编码问题。

The problem of parametric neural coding in the motor system.

作者信息

Reimer Jacob, Hatsopoulos Nicholas G

机构信息

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.

出版信息

Adv Exp Med Biol. 2009;629:243-59. doi: 10.1007/978-0-387-77064-2_12.

Abstract

In the early visual and auditory system neurons are sensitive to a variety of parameters including orientation, contrast, and spatial and temporal frequencies, amplitude, timing, and spectral variables. There are theoretical reasons to believe that neural tuning for these particular parameters is fundamental to the information processing in each area. In contrast, we argue on both principled and empirical grounds that the idea of parametric encoding that has been so fruitfully applied to processing in early sensory systems does not have the potential to achieve more than heuristic or operational status in explanations of the motor system. In the motor system, inherent correlations among parameters of motion that occur in natural movements will necessarily make a neuron that is tuned to one variable also appear to be sensitive to other variables at different time lags. Similarly, depending on the nature of the task, neurons that appear to be tuned to parameters in one coordinate frame will often appear to be tuned to correlated variables in other coordinate frames. Finally, we point out that the tuning for any parameter can vary significantly with time lag. For all these reasons, we suggest that it may not be particularly meaningful to ask whether one or another movement parameter is represented in motor cortex. Instead, we propose that the tuning of any movement-sensitive cortical neuron is best envisioned as carving out a specific hyper-volume in a high-dimensional movement space. When one considers the way this tuning space changes over time, the time-varying preferred parameter values of the neuron describe a small segment of movement that we call a "movement fragment".

摘要

在早期视觉和听觉系统中,神经元对多种参数敏感,包括方向、对比度、空间和时间频率、幅度、时间以及频谱变量。从理论上有理由相信,针对这些特定参数的神经调谐对于每个区域的信息处理至关重要。相比之下,我们基于原则和实证两方面认为,在早期感觉系统处理中卓有成效应用的参数编码概念,在解释运动系统时,其作用不会超过启发式或操作性地位。在运动系统中,自然运动中出现的运动参数之间的内在相关性必然会使一个调谐到一个变量的神经元在不同时间滞后时也似乎对其他变量敏感。同样,根据任务的性质,在一个坐标系中似乎调谐到参数的神经元,在其他坐标系中往往也似乎调谐到相关变量。最后,我们指出,对任何参数的调谐都可能随时间滞后而显著变化。基于所有这些原因,我们认为询问运动皮层中是否表征了某一个或另一个运动参数可能并不是特别有意义。相反,我们提出,任何对运动敏感的皮层神经元的调谐最好设想为在高维运动空间中划分出一个特定的超体积。当考虑这种调谐空间随时间的变化方式时,神经元随时间变化的偏好参数值描述了一小段运动,我们称之为“运动片段”。

相似文献

1
The problem of parametric neural coding in the motor system.
Adv Exp Med Biol. 2009;629:243-59. doi: 10.1007/978-0-387-77064-2_12.
2
Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
J Neurophysiol. 2004 Jan;91(1):515-32. doi: 10.1152/jn.00587.2002. Epub 2003 Sep 17.
3
Motor Cortex Latent Dynamics Encode Spatial and Temporal Arm Movement Parameters Independently.
J Neurosci. 2024 Aug 28;44(35):e1777232024. doi: 10.1523/JNEUROSCI.1777-23.2024.
4
Evidence against a single coordinate system representation in the motor cortex.
Exp Brain Res. 2006 Nov;175(2):197-210. doi: 10.1007/s00221-006-0556-x. Epub 2006 Jun 15.
5
Relationship between unconstrained arm movements and single-neuron firing in the macaque motor cortex.
J Neurosci. 2007 Mar 14;27(11):2760-80. doi: 10.1523/JNEUROSCI.3147-06.2007.
6
Motor cortical representation of hand translation and rotation during reaching.
J Neurosci. 2010 Jan 20;30(3):958-62. doi: 10.1523/JNEUROSCI.3742-09.2010.
10
Neuronal population coding of movement direction.
Science. 1986 Sep 26;233(4771):1416-9. doi: 10.1126/science.3749885.

引用本文的文献

2
Preparatory activity and the expansive null-space.
Nat Rev Neurosci. 2024 Apr;25(4):213-236. doi: 10.1038/s41583-024-00796-z. Epub 2024 Mar 5.
3
Invariant neural dynamics drive commands to control different movements.
Curr Biol. 2023 Jul 24;33(14):2962-2976.e15. doi: 10.1016/j.cub.2023.06.027. Epub 2023 Jul 3.
4
Functional architecture of M1 cells encoding movement direction.
J Comput Neurosci. 2022 Aug;51(3):299-327. doi: 10.1007/s10827-023-00850-2. Epub 2023 Jun 7.
5
Non-human primate models and systems for gait and neurophysiological analysis.
Front Neurosci. 2023 Apr 28;17:1141567. doi: 10.3389/fnins.2023.1141567. eCollection 2023.
8
Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain-Computer Interface perspective.
Eur J Neurosci. 2019 Sep;50(5):2755-2772. doi: 10.1111/ejn.14342. Epub 2019 Jan 30.
9
Different population dynamics in the supplementary motor area and motor cortex during reaching.
Nat Commun. 2018 Jul 16;9(1):2754. doi: 10.1038/s41467-018-05146-z.
10
Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response.
Neuron. 2018 Feb 21;97(4):953-966.e8. doi: 10.1016/j.neuron.2018.01.004. Epub 2018 Feb 1.

本文引用的文献

1
The organization of behavioral repertoire in motor cortex.
Annu Rev Neurosci. 2006;29:105-34. doi: 10.1146/annurev.neuro.29.051605.112924.
2
Evidence against a single coordinate system representation in the motor cortex.
Exp Brain Res. 2006 Nov;175(2):197-210. doi: 10.1007/s00221-006-0556-x. Epub 2006 Jun 15.
3
Partial cross-correlation analysis resolves ambiguity in the encoding of multiple movement features.
J Neurophysiol. 2006 Mar;95(3):1966-75. doi: 10.1152/jn.00981.2005. Epub 2005 Nov 30.
4
Correlation between speed perception and neural activity in the middle temporal visual area.
J Neurosci. 2005 Jan 19;25(3):711-22. doi: 10.1523/JNEUROSCI.4034-04.2005.
5
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7.
6
Distribution of hand location in monkeys during spontaneous behavior.
Exp Brain Res. 2004 Mar;155(1):30-6. doi: 10.1007/s00221-003-1701-4. Epub 2003 Nov 8.
7
Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
J Neurophysiol. 2004 Jan;91(1):515-32. doi: 10.1152/jn.00587.2002. Epub 2003 Sep 17.
8
Synchrony between neurons with similar muscle fields in monkey motor cortex.
Neuron. 2003 Apr 10;38(1):115-25. doi: 10.1016/s0896-6273(03)00162-4.
9
Direct cortical control of 3D neuroprosthetic devices.
Science. 2002 Jun 7;296(5574):1829-32. doi: 10.1126/science.1070291.
10
Instant neural control of a movement signal.
Nature. 2002 Mar 14;416(6877):141-2. doi: 10.1038/416141a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验