Suppr超能文献

感觉运动皮层中运动参数的编码:脑机接口视角。

Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain-Computer Interface perspective.

机构信息

Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.

University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Eur J Neurosci. 2019 Sep;50(5):2755-2772. doi: 10.1111/ejn.14342. Epub 2019 Jan 30.

Abstract

For severely paralyzed people, Brain-Computer Interfaces (BCIs) can potentially replace lost motor output and provide a brain-based control signal for augmentative and alternative communication devices or neuroprosthetics. Many BCIs focus on neuronal signals acquired from the hand area of the sensorimotor cortex, employing changes in the patterns of neuronal firing or spectral power associated with one or more types of hand movement. Hand and finger movement can be described by two groups of movement features, namely kinematics (spatial and motion aspects) and kinetics (muscles and forces). Despite extensive primate and human research, it is not fully understood how these features are represented in the SMC and how they lead to the appropriate movement. Yet, the available information may provide insight into which features are most suitable for BCI control. To that purpose, the current paper provides an in-depth review on the movement features encoded in the SMC. Even though there is no consensus on how exactly the SMC generates movement, we conclude that some parameters are well represented in the SMC and can be accurately used for BCI control with discrete as well as continuous feedback. However, the vast evidence also suggests that movement should be interpreted as a combination of multiple parameters rather than isolated ones, pleading for further exploration of sensorimotor control models for accurate BCI control.

摘要

对于严重瘫痪的人来说,脑机接口 (BCI) 可以潜在地替代失去的运动输出,并为增强和替代通信设备或神经假体提供基于大脑的控制信号。许多 BCI 专注于从感觉运动皮层的手部区域获取神经元信号,利用与一种或多种手部运动相关的神经元发射模式或频谱功率的变化。手和手指运动可以由两组运动特征来描述,即运动学(空间和运动方面)和动力学(肌肉和力量)。尽管有大量的灵长类动物和人类研究,但人们还不完全清楚这些特征在 SMC 中是如何表示的,以及它们如何导致适当的运动。然而,现有的信息可能有助于了解哪些特征最适合 BCI 控制。为此,本文对 SMC 中编码的运动特征进行了深入的综述。尽管对于 SMC 如何产生运动还没有达成共识,但我们得出结论,一些参数在 SMC 中得到了很好的表示,可以准确地用于具有离散和连续反馈的 BCI 控制。然而,大量的证据也表明,运动应该被解释为多个参数的组合,而不是孤立的参数,这就需要进一步探索感觉运动控制模型,以实现准确的 BCI 控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f91/6850411/01a05bbcfbe7/EJN-50-2755-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验