Artaechevarria Xabier, Munoz-Barrutia Arrate, Ortiz-de-Solorzano Carlos
Cancer Imaging Laboratory, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain.
IEEE Trans Med Imaging. 2009 Aug;28(8):1266-77. doi: 10.1109/TMI.2009.2014372. Epub 2009 Feb 18.
It has been shown that employing multiple atlas images improves segmentation accuracy in atlas-based medical image segmentation. Each atlas image is registered to the target image independently and the calculated transformation is applied to the segmentation of the atlas image to obtain a segmented version of the target image. Several independent candidate segmentations result from the process, which must be somehow combined into a single final segmentation. Majority voting is the generally used rule to fuse the segmentations, but more sophisticated methods have also been proposed. In this paper, we show that the use of global weights to ponderate candidate segmentations has a major limitation. As a means to improve segmentation accuracy, we propose the generalized local weighting voting method. Namely, the fusion weights adapt voxel-by-voxel according to a local estimation of segmentation performance. Using digital phantoms and MR images of the human brain, we demonstrate that the performance of each combination technique depends on the gray level contrast characteristics of the segmented region, and that no fusion method yields better results than the others for all the regions. In particular, we show that local combination strategies outperform global methods in segmenting high-contrast structures, while global techniques are less sensitive to noise when contrast between neighboring structures is low. We conclude that, in order to achieve the highest overall segmentation accuracy, the best combination method for each particular structure must be selected.
研究表明,在基于图谱的医学图像分割中,使用多个图谱图像可提高分割精度。每个图谱图像独立配准到目标图像,计算得到的变换应用于图谱图像的分割,以获得目标图像的分割版本。该过程会产生几个独立的候选分割结果,必须以某种方式将它们组合成一个最终分割结果。多数投票是通常用于融合分割结果的规则,但也有人提出了更复杂的方法。在本文中,我们表明使用全局权重对候选分割结果进行加权存在一个主要局限性。作为提高分割精度的一种方法,我们提出了广义局部加权投票方法。也就是说,融合权重根据分割性能的局部估计逐体素地自适应调整。使用数字体模和人脑的磁共振图像,我们证明了每种组合技术的性能取决于分割区域的灰度对比度特征,并且对于所有区域,没有一种融合方法能比其他方法产生更好的结果。特别是,我们表明局部组合策略在分割高对比度结构方面优于全局方法,而当相邻结构之间的对比度较低时,全局技术对噪声不太敏感。我们得出结论,为了实现最高的总体分割精度,必须为每个特定结构选择最佳的组合方法。