Suppr超能文献

MutSα和MutSβ不同的核苷酸结合/水解特性及摩尔比决定了它们不同的错配结合活性。

Distinct nucleotide binding/hydrolysis properties and molar ratio of MutSalpha and MutSbeta determine their differential mismatch binding activities.

作者信息

Tian Lei, Gu Liya, Li Guo-Min

机构信息

Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.

出版信息

J Biol Chem. 2009 Apr 24;284(17):11557-62. doi: 10.1074/jbc.M900908200. Epub 2009 Feb 19.

Abstract

MutSalpha (MSH2/MSH6) and MutSbeta (MSH2/MSH3) are eukaryotic mismatch recognition proteins that preferentially process base-base and small insertion/deletion (ID) mispairs, respectively, despite the fact that cells contain a MutSalpha:MutSbeta ratio of 10:1. To explore the mechanism underlying the differential mismatch recognition by these two proteins, purified human MutSalpha and MutSbeta were analyzed individually and competitively for their abilities to interact with a T-G and an ID substrate. We show that MutSalpha has K(D) values of 26.5 and 38.2 nm for the G-T and ID substrates, respectively, and that MutSbeta has K(D) values of 76.5 and 23.5 nm for G-T and ID, respectively. Consistent with these results, competitive binding assays revealed the following relative binding affinities: MutSbeta-ID > MutSalpha-T-G > MutSalpha-ID >> MutSbeta-T-G. Interestingly, binding of MutSbeta to ID heteroduplexes is greatly stimulated when the MutSalpha:MutSbeta ratio is > or = 10. Distinct ATP/ADP binding and ATPase activities of MutSalpha and MutSbeta were also observed. In the absence of DNA, ADP binding and ATPase activities of MutSbeta are significantly higher than those of MutSalpha. However, interaction with DNA significantly stimulates the MutSalpha ATPase activity and reduces the MutSbeta ATPase activity, the consequence being that both proteins exhibit the same level of hydrolytic activity. We conclude that the preferential processing of base-base and ID heteroduplexes by MutSalpha and MutSbeta is determined by their significant differences in ATPase activity, ADP binding activity, and high cellular MutSalpha:MutSbeta ratio.

摘要

MutSα(MSH2/MSH6)和MutSβ(MSH2/MSH3)是真核生物错配识别蛋白,分别优先处理碱基错配和小插入/缺失(ID)错配,尽管细胞中MutSα与MutSβ的比例为10:1。为了探究这两种蛋白差异错配识别的机制,我们分别对纯化的人MutSα和MutSβ以及它们竞争性地与T-G和ID底物相互作用的能力进行了分析。我们发现,MutSα对G-T和ID底物的解离常数(K(D))分别为26.5和38.2纳米,而MutSβ对G-T和ID的K(D)值分别为76.5和23.5纳米。与这些结果一致,竞争性结合试验揭示了以下相对结合亲和力:MutSβ-ID > MutSα-T-G > MutSα-ID >> MutSβ-T-G。有趣的是,当MutSα与MutSβ的比例≥10时,MutSβ与ID异源双链体的结合会受到极大刺激。还观察到MutSα和MutSβ具有不同的ATP/ADP结合及ATP酶活性。在没有DNA的情况下,MutSβ的ADP结合和ATP酶活性显著高于MutSα。然而,与DNA的相互作用会显著刺激MutSα的ATP酶活性并降低MutSβ的ATP酶活性,结果是两种蛋白表现出相同水平的水解活性。我们得出结论,MutSα和MutSβ对碱基错配和ID异源双链体的优先处理是由它们在ATP酶活性、ADP结合活性以及细胞中高MutSα:MutSβ比例方面的显著差异所决定的。

相似文献

2
Differential mismatch recognition specificities of eukaryotic MutS homologs, MutSα and MutSβ.
Biophys J. 2014 Jun 3;106(11):2483-92. doi: 10.1016/j.bpj.2014.04.026.
3
Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops.
Nat Struct Mol Biol. 2011 Dec 18;19(1):72-8. doi: 10.1038/nsmb.2175.
4
Differential specificities and simultaneous occupancy of human MutSalpha nucleotide binding sites.
J Biol Chem. 2004 Jul 2;279(27):28402-10. doi: 10.1074/jbc.M312108200. Epub 2004 Apr 22.
7
MutSbeta exceeds MutSalpha in dinucleotide loop repair.
Br J Cancer. 2010 Mar 16;102(6):1068-73. doi: 10.1038/sj.bjc.6605531. Epub 2010 Feb 16.
10
A MutSβ-Dependent Contribution of MutSα to Repeat Expansions in Fragile X Premutation Mice?
PLoS Genet. 2016 Jul 18;12(7):e1006190. doi: 10.1371/journal.pgen.1006190. eCollection 2016 Jul.

引用本文的文献

2
Intersection of the fragile X-related disorders and the DNA damage response.
DNA Repair (Amst). 2024 Dec;144:103785. doi: 10.1016/j.dnarep.2024.103785. Epub 2024 Nov 7.
4
Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo.
Nucleic Acids Res. 2023 Dec 11;51(22):12185-12206. doi: 10.1093/nar/gkad934.
5
How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants.
Int J Mol Sci. 2023 Jan 26;24(3):2404. doi: 10.3390/ijms24032404.
6
DNA Mismatch Repair and its Role in Huntington's Disease.
J Huntingtons Dis. 2021;10(1):75-94. doi: 10.3233/JHD-200438.
8
Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination.
Nat Commun. 2021 Feb 5;12(1):803. doi: 10.1038/s41467-021-21127-1.
9
New Phenotypes of Potato Co-induced by Mismatch Repair Deficiency and Somatic Hybridization.
Front Plant Sci. 2019 Jan 22;10:3. doi: 10.3389/fpls.2019.00003. eCollection 2019.

本文引用的文献

1
Mechanisms and functions of DNA mismatch repair.
Cell Res. 2008 Jan;18(1):85-98. doi: 10.1038/cr.2007.115.
2
Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs.
Mol Cell Biol. 2007 Sep;27(18):6546-54. doi: 10.1128/MCB.00855-07. Epub 2007 Jul 16.
3
Structure of the human MutSalpha DNA lesion recognition complex.
Mol Cell. 2007 May 25;26(4):579-92. doi: 10.1016/j.molcel.2007.04.018.
4
Analysis of DNA mismatch repair in cellular response to DNA damage.
Methods Enzymol. 2006;408:303-17. doi: 10.1016/S0076-6879(06)08019-0.
6
Human mismatch repair: reconstitution of a nick-directed bidirectional reaction.
J Biol Chem. 2005 Dec 2;280(48):39752-61. doi: 10.1074/jbc.M509701200. Epub 2005 Sep 27.
7
Reconstitution of 5'-directed human mismatch repair in a purified system.
Cell. 2005 Sep 9;122(5):693-705. doi: 10.1016/j.cell.2005.06.027.
9
The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair.
Mol Cell. 2003 Jul;12(1):233-46. doi: 10.1016/s1097-2765(03)00219-3.
10
Bi-directional processing of DNA loops by mismatch repair-dependent and -independent pathways in human cells.
J Biol Chem. 2003 Feb 7;278(6):3891-6. doi: 10.1074/jbc.M210687200. Epub 2002 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验