Suppr超能文献

转录组和蛋白质组数据的联合分析作为肾细胞癌中候选生物标志物鉴定的工具

Combined analysis of transcriptome and proteome data as a tool for the identification of candidate biomarkers in renal cell carcinoma.

作者信息

Seliger Barbara, Dressler Sven P, Wang Ena, Kellner Roland, Recktenwald Christian V, Lottspeich Friedrich, Marincola Francesco M, Baumgärtner Maja, Atkins Derek, Lichtenfels Rudolf

机构信息

Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany.

出版信息

Proteomics. 2009 Mar;9(6):1567-81. doi: 10.1002/pmic.200700288.

Abstract

Results obtained from expression profilings of renal cell carcinoma using different "ome"-based approaches and comprehensive data analysis demonstrated that proteome-based technologies and cDNA microarray analyses complement each other during the discovery phase for disease-related candidate biomarkers. The integration of the respective data revealed the uniqueness and complementarities of the different technologies. While comparative cDNA microarray analyses though restricted to up-regulated targets largely revealed genes involved in controlling gene/protein expression (19%) and signal transduction processes (13%), proteomics/PROTEOMEX-defined candidate biomarkers include enzymes of the cellular metabolism (36%), transport proteins (12%), and cell motility/structural molecules (10%). Candidate biomarkers defined by proteomics and PROTEOMEX are frequently shared, whereas the sharing rate between cDNA microarray and proteome-based profilings is limited. Putative candidate biomarkers provide insights into their cellular (dys)function and their diagnostic/prognostic value but still warrant further validation in larger patient numbers. Based on the fact that merely three candidate biomarkers were shared by all applied technologies, namely annexin A4, tubulin alpha-1A chain, and ubiquitin carboxyl-terminal hydrolase L1, the analysis at a single hierarchical level of biological regulation seems to provide only limited results thus emphasizing the importance and benefit of performing rather combinatorial screenings which can complement the standard clinical predictors.

摘要

使用不同的基于“组学”的方法对肾细胞癌进行表达谱分析并进行全面数据分析,结果表明,在疾病相关候选生物标志物的发现阶段,基于蛋白质组的技术和cDNA微阵列分析相互补充。整合各自的数据揭示了不同技术的独特性和互补性。虽然比较性cDNA微阵列分析虽然主要限于上调靶点,但很大程度上揭示了参与控制基因/蛋白质表达(19%)和信号转导过程(13%)的基因,但蛋白质组学/PROTEOMEX定义的候选生物标志物包括细胞代谢酶(36%)、转运蛋白(12%)和细胞运动/结构分子(10%)。蛋白质组学和PROTEOMEX定义的候选生物标志物经常共享,而cDNA微阵列和基于蛋白质组的分析之间的共享率有限。推定的候选生物标志物为其细胞(功能失调)功能及其诊断/预后价值提供了见解,但仍需在更多患者中进一步验证。基于所有应用技术仅共享三种候选生物标志物,即膜联蛋白A4、微管蛋白α-1A链和泛素羧基末端水解酶L1这一事实,在生物调节的单一层次水平上进行分析似乎只能提供有限的结果,从而强调了进行组合筛选的重要性和益处,组合筛选可以补充标准临床预测指标。

相似文献

引用本文的文献

2
The past, present, and future of coral heat stress studies.珊瑚热应激研究的过去、现在与未来。
Ecol Evol. 2019 Aug 22;9(17):10055-10066. doi: 10.1002/ece3.5576. eCollection 2019 Sep.
9
MicroRNAs in liver disease.微小 RNA 与肝脏疾病。
Gastroenterology. 2012 Jun;142(7):1431-43. doi: 10.1053/j.gastro.2012.04.007. Epub 2012 Apr 11.

本文引用的文献

4
Key clinical issues in renal cancer: a challenge for proteomics.肾癌的关键临床问题:蛋白质组学面临的挑战
World J Urol. 2007 Dec;25(6):537-56. doi: 10.1007/s00345-007-0199-y. Epub 2007 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验