Zomerdijk J C, Kieft R, Shiels P G, Borst P
Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam.
Nucleic Acids Res. 1991 Oct 11;19(19):5153-8. doi: 10.1093/nar/19.19.5153.
Transcription of the predominant surface antigen genes in Trypanosoma brucei is unusual in its resistance to the RNA polymerase inhibitor alpha-amanitin, a property typical for rDNA transcription in eukaryotes. Transcription of most other protein-coding genes in trypanosomes is sensitive to alpha-amanitin. To investigate whether RNA polymerase I, the polymerase that transcribes rRNA genes, can give rise to functional mRNAs in trypanosomes, we have fused the putative promoter of the T.brucei rRNA genes to the chloramphenicol acetyl transferase (CAT) gene and determined CAT activity after transient expression of chimeric constructs in procyclic trypanosomes. We show here that the rRNA promoter yields the same high CAT activity as the promoters for the two predominant surface antigen genes of trypanosomes, the Variant-specific Surface Glycoprotein (VSG) gene of bloodstream trypanosomes and the procyclin gene of insect-form trypanosomes, both of which are also transcribed by an alpha-amanitin-insensitive RNA polymerase. RNA polymerase I of trypanosomes seems therefore able to synthesize pre-mRNAs that are effectively processed into translatable mRNAs. Dissection of the promoter segments showed the minimal elements for a VSG gene expression site promoter to be confined to a segment of -60 to +77 bp, overlapping the most 5' putative transcription start sites as determined in vivo by RNase protection experiments. For the ribosomal promoter region a segment of -258 to +200 bp relative to the putative transcription start site was sufficient for maximal CAT activity. There is a precise requirement for specific nucleotides at the rRNA transcription start site. We detect no homology between the sequences required for promoter function of the three alpha-amanitin-resistant transcription units, rRNA, VSG and procyclin (parp) genes. This suggests that the sequence-specific recognition of these promoters either occurs by common factors detecting sequence homologies that escape us, or by separate factors that bind to different DNA sequences but interact with a common alpha-amanitin-resistant RNA polymerase.
布氏锥虫主要表面抗原基因的转录对RNA聚合酶抑制剂α-鹅膏蕈碱具有抗性,这一特性在真核生物中是核糖体DNA转录所特有的。锥虫中大多数其他蛋白质编码基因的转录对α-鹅膏蕈碱敏感。为了研究转录rRNA基因的RNA聚合酶I是否能在锥虫中产生功能性mRNA,我们将布氏锥虫rRNA基因的推定启动子与氯霉素乙酰转移酶(CAT)基因融合,并在原循环锥虫中瞬时表达嵌合构建体后测定CAT活性。我们在此表明,rRNA启动子产生的CAT活性与锥虫两个主要表面抗原基因的启动子相同,即血流锥虫的可变表面糖蛋白(VSG)基因和昆虫型锥虫的前环素基因,这两个基因也由对α-鹅膏蕈碱不敏感的RNA聚合酶转录。因此,锥虫的RNA聚合酶I似乎能够合成可有效加工成可翻译mRNA的前体mRNA。对启动子片段的剖析表明,VSG基因表达位点启动子的最小元件局限于-60至+77 bp的片段,与通过核糖核酸酶保护实验在体内确定的最5'推定转录起始位点重叠。对于核糖体启动子区域,相对于推定转录起始位点-258至+200 bp的片段足以产生最大的CAT活性。在rRNA转录起始位点对特定核苷酸有精确要求。我们未检测到三个对α-鹅膏蕈碱抗性的转录单位(rRNA、VSG和前环素(parp)基因)启动子功能所需序列之间的同源性。这表明这些启动子的序列特异性识别要么是通过检测我们未发现的序列同源性的共同因子发生,要么是通过结合不同DNA序列但与共同的对α-鹅膏蕈碱抗性的RNA聚合酶相互作用的单独因子发生。