Suppr超能文献

利用 Hough 变换检测视网膜眼底图像中的视神经头。

Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles.

机构信息

Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada.

出版信息

J Digit Imaging. 2010 Jun;23(3):332-41. doi: 10.1007/s10278-009-9189-5.

Abstract

Detection of the optic nerve head (ONH) is a key preprocessing component in algorithms for the automatic extraction of the anatomical structures of the retina. We propose a method to automatically locate the ONH in fundus images of the retina. The method includes edge detection using the Sobel operators and detection of circles using the Hough transform. The Hough transform assists in the detection of the center and radius of a circle that approximates the margin of the ONH. Forty images of the retina from the Digital Retinal Images for Vessel Extraction (DRIVE) dataset were used to test the performance of the proposed method. The center and boundary of the ONH were independently marked by an ophthalmologist for evaluation. Free-response receiver operating characteristics (FROC) analysis as well as measures of distance and overlap were used to evaluate the performance of the proposed method. The centers of the ONH were detected with an average distance of 0.36 mm to the corresponding centers marked by the ophthalmologist; the detected circles had an average overlap of 0.73 with the boundaries of the ONH drawn by the ophthalmologist. FROC analysis indicated a sensitivity of detection of 92.5% at 8.9 false-positives per image. With an intensity-based criterion for the selection of the circle and a limit of 40 pixels (0.8 mm) on the distance between the center of the detected circle and the manually identified center of the ONH, a successful detection rate of 90% was obtained with the DRIVE dataset.

摘要

视神经头(ONH)的检测是自动提取视网膜解剖结构算法的关键预处理步骤。我们提出了一种在视网膜眼底图像中自动定位视神经头的方法。该方法包括使用 Sobel 算子进行边缘检测和使用 Hough 变换进行圆检测。Hough 变换有助于检测近似 ONH 边缘的圆的中心和半径。使用来自 Digital Retinal Images for Vessel Extraction(DRIVE)数据集的 40 张视网膜图像来测试所提出方法的性能。由眼科医生独立标记 ONH 的中心和边界,用于评估。使用自由响应接收器操作特性(FROC)分析以及距离和重叠度量来评估所提出方法的性能。ONH 的中心以平均 0.36 毫米的距离检测到与眼科医生标记的相应中心相对应的中心;检测到的圆与眼科医生绘制的 ONH 边界的平均重叠度为 0.73。FROC 分析表明,在每张图像 8.9 个假阳性的情况下,检测的灵敏度为 92.5%。使用基于强度的圆选择标准,以及检测到的圆的中心与手动识别的 ONH 中心之间的距离限制为 40 像素(0.8 毫米),在 DRIVE 数据集上获得了 90%的成功检测率。

相似文献

3
4
Model-based optic nerve head segmentation on retinal fundus images.基于模型的眼底图像视神经乳头分割
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2626-9. doi: 10.1109/IEMBS.2011.6090724.
10
A mobile computer aided system for optic nerve head detection.用于视神经头检测的移动计算机辅助系统。
Comput Methods Programs Biomed. 2018 Aug;162:139-148. doi: 10.1016/j.cmpb.2018.05.004. Epub 2018 May 4.

引用本文的文献

10
Optic disc detection in color fundus images using ant colony optimization.使用蚁群优化算法进行彩色眼底图像的视盘检测。
Med Biol Eng Comput. 2013 Mar;51(3):295-303. doi: 10.1007/s11517-012-0994-5. Epub 2012 Nov 19.

本文引用的文献

1
A computational approach to edge detection.一种基于计算的边缘检测方法。
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
2
3
Identification of the optic nerve head with genetic algorithms.利用遗传算法识别视神经乳头。
Artif Intell Med. 2008 Jul;43(3):243-59. doi: 10.1016/j.artmed.2008.04.005. Epub 2008 Jun 4.
10
Retinal image analysis: concepts, applications and potential.视网膜图像分析:概念、应用及潜力。
Prog Retin Eye Res. 2006 Jan;25(1):99-127. doi: 10.1016/j.preteyeres.2005.07.001. Epub 2005 Sep 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验