Suppr超能文献

评估预测室内住宅挥发性有机化合物浓度分布的方法。

Evaluating methods for predicting indoor residential volatile organic compound concentration distributions.

机构信息

Silent Spring Institute, Newton, MA 02458, USA.

出版信息

J Expo Sci Environ Epidemiol. 2009 Nov;19(7):682-93. doi: 10.1038/jes.2009.1. Epub 2009 Feb 25.

Abstract

Accurate modeling of exposure to volatile organic compounds (VOCs) over a large study population depends on proper characterization of concentrations in the indoor residential environment. However, owing to the high expense of field sampling campaigns for determining indoor air concentrations, such studies have only been conducted for limited populations. Therefore, there is a need to determine the degree to which results can be extrapolated to unstudied settings through the use of models, the most appropriate information required to do so and the potential errors associated with the use of sub-optimal information. The goal of this analysis is to evaluate three different source indicators used to predict indoor VOC concentration distributions for a new study population. Data from two field studies are used. For each data set, source strength, indoor-outdoor (I-O) difference and indoor/outdoor (I/O) ratio, collectively referred to as source indicators, are calculated and fit with distributions. These distributions, as well as distributions for air exchange, volume and outdoor concentrations for the new study population, are used for predicting indoor concentrations using Monte Carlo simulations, which are then compared with actual distributions. As expected, the source strength often provides the most effective predictions (11 out of 20 instances), but is slightly outperformed by, although is still comparable with, the I-O difference on some occasions (4 out of 20). The I/O ratio generally has the greatest prediction errors, given its dependence on outdoor concentrations, but performs optimally in a limited number of cases (5 out of 20). When deciding between the source strength and I-O difference, one must consider the availability and fidelity of both current and future data. On the basis of our findings, exposure-monitoring studies should report the distribution statistics for I-O differences and, if the data are available, for source strengths.

摘要

准确地模拟大研究人群中挥发性有机化合物 (VOC) 的暴露情况取决于对室内居住环境中浓度的正确描述。然而,由于确定室内空气浓度的现场采样活动费用高昂,因此此类研究仅在有限的人群中进行。因此,需要通过模型确定在多大程度上可以将结果推断到未研究的环境中,以及确定为此需要最适当的信息,以及使用次优信息相关的潜在错误。本分析的目的是评估用于预测新研究人群室内 VOC 浓度分布的三种不同源指标。使用来自两项现场研究的数据。对于每个数据集,源强度、室内-室外 (I-O) 差异和室内/室外 (I/O) 比,统称为源指标,都进行了计算和分布拟合。这些分布,以及新研究人群的空气交换、体积和室外浓度的分布,用于使用蒙特卡罗模拟进行室内浓度预测,然后将预测值与实际分布进行比较。正如预期的那样,源强度通常提供最有效的预测(20 次中有 11 次),但在某些情况下(20 次中有 4 次)略逊于 I-O 差异,但仍可与之相媲美。I/O 比通常具有最大的预测误差,因为它取决于室外浓度,但在有限的情况下表现最佳(20 次中有 5 次)。在源强度和 I-O 差异之间做出选择时,必须考虑当前和未来数据的可用性和保真度。基于我们的发现,暴露监测研究应报告 I-O 差异的分布统计信息,如果数据可用,还应报告源强度的分布统计信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验