Suppr超能文献

改进恐怖主义应用中基于风险的决策制定。

Improving risk-based decision making for terrorism applications.

作者信息

Cox Louis Anthony

机构信息

Cox Associates and University of Colorado, USA.

出版信息

Risk Anal. 2009 Mar;29(3):336-41; discussion 342-3. doi: 10.1111/j.1539-6924.2009.01206.x.

Abstract

How can we best allocate limited defensive resources to reduce terrorism risks? Dillon et al.'s Antiterrorism Risk-Based Decision Aid (ARDA) system provides a useful point of departure for addressing this crucial question by exhibiting a real-world system that calculates risk reduction scores for different portfolios of risk-reducing countermeasures and using them to rank-order different possible risk mitigation alternatives for Navy facilities. This comment points out some potential limitations of any scoring system that does not take into account risk externalities, interdependencies among threats, uncertainties that are correlated across targets, and attacker responses to alternative allocations of defensive resources. In at least some simple situations, allocations based on risk reduction scores and comparisons can inadvertently increase risks by providing intelligent attackers with valuable information, or they can fail to reduce risks as effectively as nonscoring, optimization-based approaches. These limitations of present scoring methods present exciting technical challenges and opportunities for risk analysts to develop improved methods for protecting facilities and infrastructure against terrorist threats.

摘要

我们如何才能最好地分配有限的防御资源以降低恐怖主义风险?狄龙等人的基于风险的反恐决策辅助工具(ARDA)系统通过展示一个实际系统提供了一个有用的出发点,该系统能为不同的风险降低对策组合计算风险降低分数,并利用这些分数对海军设施不同的可能风险缓解方案进行排序,从而解决这个关键问题。本评论指出了任何不考虑风险外部性、威胁之间的相互依存关系、跨目标相关的不确定性以及攻击者对防御资源替代分配的反应的评分系统的一些潜在局限性。在至少一些简单情况下,基于风险降低分数和比较的分配可能会因向智能攻击者提供有价值的信息而无意中增加风险,或者它们可能无法像基于非评分的优化方法那样有效地降低风险。当前评分方法的这些局限性为风险分析师开发改进的方法以保护设施和基础设施免受恐怖主义威胁带来了令人兴奋的技术挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验