Mojica F J M, Díez-Villaseñor C, García-Martínez J, Almendros C
Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain.
Microbiology (Reading). 2009 Mar;155(Pt 3):733-740. doi: 10.1099/mic.0.023960-0.
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated CRISPR-associated sequence (CAS) proteins constitute a novel antiviral defence system that is widespread in prokaryotes. Repeats are separated by spacers, some of them homologous to sequences in mobile genetic elements. Although the whole process involved remains uncharacterized, it is known that new spacers are incorporated into CRISPR loci of the host during a phage challenge, conferring specific resistance against the virus. Moreover, it has been demonstrated that such interference is based on small RNAs carrying a spacer. These RNAs would guide the defence apparatus to foreign molecules carrying sequences that match the spacers. Despite this essential role, the spacer uptake mechanism has not been addressed. A first step forward came from the detection of motifs associated with spacer precursors (proto-spacers) of Streptococcus thermophilus, revealing a specific recognition of donor sequences in this species. Here we show that the conservation of proto-spacer adjacent motifs (PAMs) is a common theme for the most diverse CRISPR systems. The PAM sequence depends on the CRISPR-CAS variant, implying that there is a CRISPR-type-specific (motif-directed) choice of the spacers, which subsequently determines the interference target. PAMs also direct the orientation of spacers in the repeat arrays. Remarkably, observations based on such polarity argue against a recognition of the spacer precursors on transcript RNA molecules as a general rule.
成簇规律间隔短回文重复序列(CRISPR)及其相关的CRISPR相关序列(CAS)蛋白构成了一种新型的抗病毒防御系统,该系统在原核生物中广泛存在。重复序列被间隔序列隔开,其中一些间隔序列与移动遗传元件中的序列同源。尽管整个过程尚不清楚,但已知在噬菌体攻击期间,新的间隔序列会被整合到宿主的CRISPR基因座中,从而赋予对病毒的特异性抗性。此外,已经证明这种干扰是基于携带间隔序列的小RNA。这些RNA会将防御机制导向携带与间隔序列匹配的序列的外来分子。尽管有这一重要作用,但间隔序列摄取机制尚未得到解决。向前迈出的第一步来自于对嗜热链球菌间隔序列前体(原间隔序列)相关基序的检测,揭示了该物种中供体序列的特异性识别。在这里我们表明,原间隔序列相邻基序(PAM)的保守性是最多样化的CRISPR系统的一个共同特征。PAM序列取决于CRISPR-CAS变体,这意味着间隔序列存在CRISPR类型特异性(基序导向)选择,随后决定干扰靶点。PAM还指导间隔序列在重复阵列中的方向。值得注意的是,基于这种极性的观察结果表明,一般情况下,转录RNA分子上的间隔序列前体不会被识别。