Suppr超能文献

源自耳蜗感觉上皮的干细胞/祖细胞可形成具有不同形态和特征的球体。

Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.

作者信息

Diensthuber Marc, Oshima Kazuo, Heller Stefan

机构信息

Departments of Otolaryngology-Head & Neck Surgery and Molecular & Cellular Physiology, School of Medicine, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.

出版信息

J Assoc Res Otolaryngol. 2009 Jun;10(2):173-90. doi: 10.1007/s10162-009-0161-3. Epub 2009 Feb 27.

Abstract

Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.

摘要

非哺乳类脊椎动物通过支持细胞的不对称分裂来再生失去的感觉毛细胞。因此,鸟类、两栖动物和鱼类的内耳或侧线支持细胞可作为真正的干细胞,使含毛细胞的器官具有较高的再生能力。毛细胞再生在哺乳动物的耳蜗中不会发生,但具有增殖能力的细胞可从新生耳蜗中分离出来。当在非贴壁条件下培养时,这些细胞有能力形成克隆性漂浮集落,即所谓的球体。我们注意到,源自小鼠耳蜗感觉上皮细胞的球体群体是异质性的,由形态上不同的球体类型组成,在此将其分类为实心、过渡和空心。耳蜗感觉上皮来源的干/祖细胞最初产生小的实心球体,随后转变为空心球体,这种变化伴随着大多数球体细胞的上皮分化。只有实心球体,以及在较小程度上的过渡球体,似乎含有自我更新的干细胞,而空心球体则不能持续传代。实心球体中表达Pax-2的推定耳祖细胞的快速循环数量明显多于空心球体。在新生感觉斑中上调的Islet-1在实心球体中也比在空心球体中更丰富。同样,以多种毛细胞标记物表达为特征的毛细胞样细胞,在源自实心球体的细胞群体中分化的数量明显更多。我们得出结论,耳蜗感觉上皮细胞群体最初产生具有自我更新能力的小实心球体,随后转变为空心球体,这一过程伴随着干性的丧失和自发产生毛细胞样细胞的能力降低。因此,实心球体可能是基于细胞的检测或旨在开发细胞替代疗法的动物模型移植研究中最合适的球体类型。

相似文献

1
Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.
J Assoc Res Otolaryngol. 2009 Jun;10(2):173-90. doi: 10.1007/s10162-009-0161-3. Epub 2009 Feb 27.
2
[Characterization of stem cells derived from the neonatal auditory sensory epithelium].
HNO. 2010 Nov;58(11):1056, 1058, 1060-6. doi: 10.1007/s00106-010-2155-1.
3
Progenitor Cells from the Adult Human Inner Ear.
Anat Rec (Hoboken). 2020 Mar;303(3):461-470. doi: 10.1002/ar.24228. Epub 2019 Sep 5.
4
Isolation of sphere-forming stem cells from the mouse inner ear.
Methods Mol Biol. 2009;493:141-62. doi: 10.1007/978-1-59745-523-7_9.
5
Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8167-72. doi: 10.1073/pnas.1202774109. Epub 2012 May 4.
6
Characterization of proliferating cells from newborn mouse cochleae.
Neuroreport. 2006 May 29;17(8):767-71. doi: 10.1097/01.wnr.0000215781.22345.8b.
7
Isolation and culture of hair cell progenitors from postnatal rat cochleae.
J Neurobiol. 2005 Dec;65(3):282-93. doi: 10.1002/neu.20190.
9
Identification and characterization of mouse cochlear stem cells.
Dev Neurosci. 2007;29(3):251-60. doi: 10.1159/000096415. Epub 2006 Oct 17.
10
Concise review: Inner ear stem cells--an oxymoron, but why?
Stem Cells. 2012 Jan;30(1):69-74. doi: 10.1002/stem.785.

引用本文的文献

1
Analysis of miRNAs from Inner Ear Organoid-Derived Extracellular Vesicles.
J Assoc Res Otolaryngol. 2025 Jul 16. doi: 10.1007/s10162-025-00998-x.
2
Shh agonist enhances maturation in homotypic Lgr5-positive inner ear organoids.
Theranostics. 2025 Apr 13;15(12):5543-5565. doi: 10.7150/thno.107345. eCollection 2025.
3
Optimized inner ear organoids for efficient hair cell generation and ototoxicity response modeling.
Sci China Life Sci. 2025 May;68(5):1369-1383. doi: 10.1007/s11427-024-2803-1. Epub 2025 Jan 23.
4
Organoids-the key to novel therapies for the inner ear?
HNO. 2024 Dec;72(Suppl 2):83-88. doi: 10.1007/s00106-023-01367-x. Epub 2024 May 22.
5
[Organoids-the key to novel therapies for the inner ear? German version].
HNO. 2023 Nov;71(11):702-707. doi: 10.1007/s00106-023-01366-y. Epub 2023 Oct 16.
6
Mouse Embryonic Fibroblasts-Derived Extracellular Matrix Facilitates Expansion of Inner Ear-Derived Cells.
Cell J. 2023 Jul 25;25(7):447-454. doi: 10.22074/cellj.2023.1989426.1228.
8
A Novel Model Delineating Hair Cell Regeneration and Neural Reinnervation in Adult Mouse Cochlea.
Front Mol Neurosci. 2022 Jan 10;14:757831. doi: 10.3389/fnmol.2021.757831. eCollection 2021.
9
Murine cochlear cell sorting and cell-type-specific organoid culture.
STAR Protoc. 2021 Jul 7;2(3):100645. doi: 10.1016/j.xpro.2021.100645. eCollection 2021 Sep 17.
10
Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea.
Cell Rep. 2021 Jan 19;34(3):108646. doi: 10.1016/j.celrep.2020.108646.

本文引用的文献

2
Isolation of sphere-forming stem cells from the mouse inner ear.
Methods Mol Biol. 2009;493:141-62. doi: 10.1007/978-1-59745-523-7_9.
4
Differentiation of inner ear stem cells to functional sensory neurons.
Dev Neurobiol. 2008 Apr;68(5):669-84. doi: 10.1002/dneu.20616.
5
Isolation, growth and differentiation of hair cell progenitors from the newborn rat cochlear greater epithelial ridge.
J Neurosci Methods. 2007 Aug 30;164(2):271-9. doi: 10.1016/j.jneumeth.2007.05.009. Epub 2007 May 18.
6
Robust postmortem survival of murine vestibular and cochlear stem cells.
J Assoc Res Otolaryngol. 2007 Jun;8(2):194-204. doi: 10.1007/s10162-007-0079-6. Epub 2007 Mar 3.
7
Differential distribution of stem cells in the auditory and vestibular organs of the inner ear.
J Assoc Res Otolaryngol. 2007 Mar;8(1):18-31. doi: 10.1007/s10162-006-0058-3. Epub 2006 Dec 14.
8
A two-step mechanism underlies the planar polarization of regenerating sensory hair cells.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18615-20. doi: 10.1073/pnas.0608536103. Epub 2006 Nov 21.
9
Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis.
Stem Cells. 2007 Feb;25(2):332-9. doi: 10.1634/stemcells.2006-0303. Epub 2006 Oct 12.
10
Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.
Nature. 2006 Jun 22;441(7096):984-7. doi: 10.1038/nature04849.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验