Suppr超能文献

比较不同大脑的组织学数据:误差来源及将其最小化的策略。

Comparing histological data from different brains: sources of error and strategies for minimizing them.

作者信息

Simmons Donna M, Swanson Larry W

机构信息

Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.

出版信息

Brain Res Rev. 2009 May;60(2):349-67. doi: 10.1016/j.brainresrev.2009.02.002. Epub 2009 Feb 24.

Abstract

The recent development of brain atlases with computer graphics templates, and of huge databases of neurohistochemical data on the internet, has forced a systematic re-examination of errors associated with comparing histological features between adjacent sections of the same brain, between brains treated in the same way, and between brains from groups treated in different ways. The long-term goal is to compare as accurately as possible a broad array of data from experimental brains within the framework of reference atlases. Main sources of error, each of which ideally should be measured and minimized, include intrinsic biological variation, linear and nonlinear distortion of histological sections, plane of section differences between each brain, section alignment problems, and sampling errors. These variables are discussed, along with approaches to error estimation and minimization in terms of a specific example-the distribution of neuroendocrine neurons in the rat paraventricular nucleus. Based on the strategy developed here, the main conclusion is that the best long-term solution is a high-resolution 3D computer graphics model of the brain that can be sliced in any plane and used as the framework for quantitative neuroanatomy, databases, knowledge management systems, and structure-function modeling. However, any approach to the automatic annotation of neuroanatomical data-relating its spatial distribution to a reference atlas-should deal systematically with these sources of error, which reduce localization reliability.

摘要

近期,带有计算机图形模板的脑图谱以及互联网上庞大的神经组织化学数据库的发展,促使人们对与比较同一大脑相邻切片之间、以相同方式处理的大脑之间以及以不同方式处理的组间大脑的组织学特征相关的误差进行系统的重新审视。长期目标是在参考图谱的框架内尽可能准确地比较来自实验大脑的大量数据。误差的主要来源,理想情况下每个都应进行测量并最小化,包括内在生物学变异、组织学切片的线性和非线性失真、每个大脑之间的切片平面差异、切片对齐问题以及抽样误差。结合一个具体例子——大鼠室旁核中神经内分泌神经元的分布,对这些变量以及误差估计和最小化方法进行了讨论。基于此处制定的策略,主要结论是,最佳的长期解决方案是一个高分辨率的大脑三维计算机图形模型,该模型可以在任何平面上切片,并用作定量神经解剖学、数据库、知识管理系统和结构 - 功能建模的框架。然而,任何将神经解剖学数据自动标注(即将其空间分布与参考图谱相关联)的方法都应系统地处理这些降低定位可靠性的误差来源。

相似文献

1
Comparing histological data from different brains: sources of error and strategies for minimizing them.
Brain Res Rev. 2009 May;60(2):349-67. doi: 10.1016/j.brainresrev.2009.02.002. Epub 2009 Feb 24.
3
High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas.
Neurosci Lett. 2008 Jun 13;438(1):85-9. doi: 10.1016/j.neulet.2008.04.057. Epub 2008 Apr 20.
4
The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy.
BMC Bioinformatics. 2006 Dec 29;7:544. doi: 10.1186/1471-2105-7-544.
5
The brain atlas concordance problem: quantitative comparison of anatomical parcellations.
PLoS One. 2009 Sep 29;4(9):e7200. doi: 10.1371/journal.pone.0007200.
7
The creation of a brain atlas for image guided neurosurgery using serial histological data.
Neuroimage. 2006 Apr 1;30(2):359-76. doi: 10.1016/j.neuroimage.2005.09.041. Epub 2006 Jan 9.
8
High-resolution digital brain atlases: a Hubble telescope for the brain.
Ann N Y Acad Sci. 2011 May;1225 Suppl 1:E147-59. doi: 10.1111/j.1749-6632.2011.06009.x.
9
The symbolic atlas of the brain: handling non-visual information associated with neuroanatomy.
Med Inform (Lond). 1996 Jan-Mar;21(1):1-21. doi: 10.3109/14639239609009007.
10
High thickness histological sections as alternative to study the three-dimensional microscopic human sub-cortical neuroanatomy.
Brain Struct Funct. 2018 Apr;223(3):1121-1132. doi: 10.1007/s00429-017-1548-2. Epub 2017 Nov 1.

引用本文的文献

1
A mouse brain stereotaxic topographic atlas with isotropic 1-μm resolution.
Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09211-8.
5
Development and advancements in rodent MRI-based brain atlases.
Heliyon. 2024 Mar 8;10(6):e27421. doi: 10.1016/j.heliyon.2024.e27421. eCollection 2024 Mar 30.
7
A neuroscientist's guide to using murine brain atlases for efficient analysis and transparent reporting.
Front Neuroinform. 2023 Mar 9;17:1154080. doi: 10.3389/fninf.2023.1154080. eCollection 2023.
8
Histological E-data Registration in rodent Brain Spaces.
Elife. 2023 Jan 13;12:e83496. doi: 10.7554/eLife.83496.
10
Colorimetric histology using plasmonically active microscope slides.
Nature. 2021 Oct;598(7879):65-71. doi: 10.1038/s41586-021-03835-2. Epub 2021 Oct 6.

本文引用的文献

1
High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas.
Neurosci Lett. 2008 Jun 13;438(1):85-9. doi: 10.1016/j.neulet.2008.04.057. Epub 2008 Apr 20.
2
Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain.
IEEE/ACM Trans Comput Biol Bioinform. 2007 Jul-Sep;4(3):382-393. doi: 10.1109/tcbb.2007.1035.
4
Online workbenches for neural network connections.
J Comp Neurol. 2007 Feb 10;500(5):807-14. doi: 10.1002/cne.21209.
6
Genome-wide atlas of gene expression in the adult mouse brain.
Nature. 2007 Jan 11;445(7124):168-76. doi: 10.1038/nature05453. Epub 2006 Dec 6.
8
Large-scale genomic approaches to brain development and circuitry.
Annu Rev Neurosci. 2005;28:89-108. doi: 10.1146/annurev.neuro.26.041002.131436.
9
Design-based stereology in neuroscience.
Neuroscience. 2005;130(4):813-31. doi: 10.1016/j.neuroscience.2004.08.050.
10
A multimodal, multidimensional atlas of the C57BL/6J mouse brain.
J Anat. 2004 Feb;204(2):93-102. doi: 10.1111/j.1469-7580.2004.00264.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验