Micheva Kristina D, Smith Stephen J
Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
Neuron. 2007 Jul 5;55(1):25-36. doi: 10.1016/j.neuron.2007.06.014.
Many biological functions depend critically upon fine details of tissue molecular architecture that have resisted exploration by existing imaging techniques. This is particularly true for nervous system tissues, where information processing function depends on intricate circuit and synaptic architectures. Here, we describe a new imaging method, called array tomography, which combines and extends superlative features of modern optical fluorescence and electron microscopy methods. Based on methods for constructing and repeatedly staining and imaging ordered arrays of ultrathin (50-200 nm), resin-embedded serial sections on glass microscope slides, array tomography allows for quantitative, high-resolution, large-field volumetric imaging of large numbers of antigens, fluorescent proteins, and ultrastructure in individual tissue specimens. Compared to confocal microscopy, array tomography offers the advantage of better spatial resolution, in particular along the z axis, as well as depth-independent immunofluorescent staining. The application of array tomography can reveal important but previously unseen features of brain molecular architecture.
许多生物学功能严重依赖于组织分子结构细节,而这些细节一直难以通过现有成像技术进行探究。神经系统组织尤其如此,其信息处理功能依赖于复杂的回路和突触结构。在此,我们描述了一种名为阵列断层扫描的新成像方法,它结合并扩展了现代光学荧光和电子显微镜方法的卓越特性。基于在玻璃显微镜载玻片上构建并反复染色和成像超薄(50 - 200纳米)、树脂包埋的连续切片有序阵列的方法,阵列断层扫描能够对单个组织标本中的大量抗原、荧光蛋白和超微结构进行定量、高分辨率、大视野体积成像。与共聚焦显微镜相比,阵列断层扫描具有更好的空间分辨率优势,特别是在z轴方向,以及与深度无关的免疫荧光染色。阵列断层扫描的应用能够揭示脑分子结构中重要但以前未见的特征。