Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
Elife. 2021 Feb 11;10:e61408. doi: 10.7554/eLife.61408.
3D imaging data necessitate 3D reference atlases for accurate quantitative interpretation. Existing computational methods to generate 3D atlases from 2D-derived atlases result in extensive artifacts, while manual curation approaches are labor-intensive. We present a computational approach for 3D atlas construction that substantially reduces artifacts by identifying anatomical boundaries in the underlying imaging data and using these to guide 3D transformation. Anatomical boundaries also allow extension of atlases to complete edge regions. Applying these methods to the eight developmental stages in the Allen Developing Mouse Brain Atlas (ADMBA) led to more comprehensive and accurate atlases. We generated imaging data from 15 whole mouse brains to validate atlas performance and observed qualitative and quantitative improvement (37% greater alignment between atlas and anatomical boundaries). We provide the pipeline as the MagellanMapper software and the eight 3D reconstructed ADMBA atlases. These resources facilitate whole-organ quantitative analysis between samples and across development.
3D 成像数据需要 3D 参考图谱进行准确的定量解释。现有的从 2D 衍生图谱生成 3D 图谱的计算方法会导致大量伪影,而手动编纂方法则非常耗时。我们提出了一种计算方法来构建 3D 图谱,该方法通过识别基础成像数据中的解剖边界并使用这些边界来指导 3D 变换,从而大大减少了伪影。解剖边界还允许将图谱扩展到完整的边缘区域。将这些方法应用于 Allen 发育中的小鼠脑图谱(ADMBA)的八个发育阶段,得到了更全面和准确的图谱。我们从 15 个完整的小鼠脑中生成了成像数据来验证图谱的性能,并观察到了定性和定量的改善(图谱与解剖边界之间的对齐度提高了 37%)。我们提供了 MagellanMapper 软件和八个 3D 重建的 ADMBA 图谱作为资源。这些资源有助于在样本之间和整个发育过程中进行全器官定量分析。