Suppr超能文献

含二血红素的琥珀酸:醌氧化还原酶中跨膜质子转移辅助跨膜电子转移的有限可逆性

Limited reversibility of transmembrane proton transfer assisting transmembrane electron transfer in a dihaem-containing succinate:quinone oxidoreductase.

作者信息

Madej M Gregor, Müller Florian G, Ploch Julian, Lancaster C Roy D

机构信息

Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany.

出版信息

Biochim Biophys Acta. 2009 Jun;1787(6):593-600. doi: 10.1016/j.bbabio.2009.02.011. Epub 2009 Feb 27.

Abstract

Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential (Deltap), either by supporting transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by supporting transmembrane proton transfer. The first mechanism has been unequivocally demonstrated to be operational for Deltap-dependent catalysis of succinate oxidation by quinone in the case of the dihaem-containing succinate:menaquinone reductase (SQR) from the Gram-positive bacterium Bacillus licheniformis. This is physiologically relevant in that it allows the transmembrane potential Deltap to drive the endergonic oxidation of succinate by menaquinone by the dihaem-containing SQR of Gram-positive bacteria. In the case of a related but different respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of the epsilon-proteobacterium Wolinella succinogenes, evidence has been obtained that both mechanisms are combined, so as to facilitate transmembrane electron transfer by proton transfer via a both novel and essential compensatory transmembrane proton transfer pathway ("E-pathway"). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Deltap. This compensatory "E-pathway" appears to be required by all dihaem-containing QFR enzymes and results in the overall reaction being electroneutral. However, here we show that the reverse reaction, the oxidation of succinate by quinone, as catalysed by W. succinogenes QFR, is not electroneutral. The implications for transmembrane proton transfer via the E-pathway are discussed.

摘要

膜蛋白复合物能够通过支持跨膜电子传递(与膜两侧的质子化反应偶联)或支持跨膜质子传递,来实现跨膜电化学质子电位(Δp)的产生和利用。在革兰氏阳性菌地衣芽孢杆菌含两个血红素的琥珀酸:甲萘醌还原酶(SQR)的情况下,第一种机制已被明确证明可用于醌依赖的琥珀酸氧化的Δp依赖性催化。这在生理上是相关的,因为它允许跨膜电位Δp通过革兰氏阳性菌含两个血红素的SQR驱动甲萘醌对琥珀酸的吸能氧化。在一种相关但不同的呼吸膜蛋白复合物,即ε-变形菌沃氏琥珀酸弧菌含两个血红素的喹醇:富马酸还原酶(QFR)的情况下,已获得证据表明两种机制结合在一起,通过一条既新颖又必不可少的补偿性跨膜质子传递途径(“E途径”),经由质子传递促进跨膜电子传递。尽管甲萘醌醇对富马酸的还原是放能的,但显然其放能程度不足以支持Δp的产生。这种补偿性“E途径”似乎是所有含两个血红素的QFR酶所必需的,并且导致总体反应呈电中性。然而,我们在此表明,沃氏琥珀酸弧菌QFR催化的反向反应,即醌对琥珀酸的氧化,不是电中性的。本文讨论了通过E途径进行跨膜质子传递的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验