Lancaster C Roy D
Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Str. 7, D-60528 Frankfurt am Main, Germany.
Biochim Biophys Acta. 2002 Oct 11;1565(2):215-31. doi: 10.1016/s0005-2736(02)00571-0.
The structure of the respiratory membrane protein complex quinol:fumarate reductase (QFR) from Wolinella succinogenes has been determined by X-ray crystallography at 2.2-A resolution [Nature 402 (1999) 377]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulfur clusters, and two haem b groups), a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. The structure of the membrane-integral dihaem cytochrome b reveals that all transmembrane helical segments are tilted with respect to the membrane normal. The "four-helix" dihaem binding motif is very different from other dihaem-binding transmembrane four-helix bundles, such as the "two-helix motif" of the cytochrome bc(1) complex and the "three-helix motif" of the formate dehydrogenase/hydrogenase group. The gamma-hydroxyl group of Ser C141 has an important role in stabilising a kink in transmembrane helix IV. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which was found to be essential for menaquinol oxidation [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13051]. The distal location of this residue in the structure indicates that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could in principle be associated with the generation of a transmembrane electrochemical potential. However, it is suggested here that in W. succinogenes QFR, this electrogenic effect is counterbalanced by the transfer of two protons via a proton transfer pathway (the "E-pathway") in concert with the transfer of two electrons via the membrane-bound haem groups. According to this "E-pathway hypothesis", the net reaction catalysed by W. succinogenes QFR does not contribute directly to the generation of a transmembrane electrochemical potential.
已通过X射线晶体学在2.2埃分辨率下确定了来自产琥珀酸沃林氏菌的呼吸膜蛋白复合物醌:富马酸还原酶(QFR)的结构[《自然》402 (1999) 377]。基于三个蛋白质亚基A、B和C的结构以及六个辅基(一个共价结合的黄素腺嘌呤二核苷酸、三个铁硫簇和两个血红素b基团)的排列,提出了一条从膜中氧化醌的双血红素细胞色素b到亲水性亚基A中富马酸还原位点的电子传递途径。膜整合双血红素细胞色素b的结构表明,所有跨膜螺旋片段相对于膜法线都是倾斜的。“四螺旋”双血红素结合基序与其他双血红素结合跨膜四螺旋束非常不同,例如细胞色素bc(1)复合物的“双螺旋基序”和甲酸脱氢酶/氢化酶组的“三螺旋基序”。丝氨酸C141的γ-羟基在稳定跨膜螺旋IV中的一个扭结方面具有重要作用。通过结合定点诱变、功能和电化学表征以及X射线晶体学的结果,鉴定出一个对甲萘醌氧化至关重要的残基[《美国国家科学院院刊》97 (2000) 13051]。该残基在结构中的远端位置表明,含双血红素的琥珀酸:醌氧化还原酶中甲萘醌氧化与富马酸还原的偶联原则上可能与跨膜电化学势的产生有关。然而,本文提出,在产琥珀酸沃林氏菌QFR中,这种电效应通过质子转移途径(“E途径”)转移两个质子与通过膜结合血红素基团转移两个电子协同作用而被抵消。根据这个“E途径假说”,产琥珀酸沃林氏菌QFR催化的净反应不会直接导致跨膜电化学势的产生。