Suppr超能文献

好氧区氮循环耦合过程及厌氧氨氧化菌的氧气敏感性。

Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

机构信息

Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.

出版信息

PLoS One. 2011;6(12):e29299. doi: 10.1371/journal.pone.0029299. Epub 2011 Dec 28.

Abstract

Nutrient measurements indicate that 30-50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2)) on anammox, NH(3) oxidation and NO(3)(-) reduction in (15)N-labeling experiments with varying O(2) concentrations (0-25 µmol L(-1)) in the Namibian and Peruvian OMZs. Our results show that O(2) is a major controlling factor for anammox activity in OMZ waters. Based on our O(2) assays we estimate the upper limit for anammox to be ~20 µmol L(-1). In contrast, NH(3) oxidation to NO(2)(-) and NO(3)(-) reduction to NO(2)(-) as the main NH(4)(+) and NO(2)(-) sources for anammox were only moderately affected by changing O(2) concentrations. Intriguingly, aerobic NH(3) oxidation was active at non-detectable concentrations of O(2), while anaerobic NO(3)(-) reduction was fully active up to at least 25 µmol L(-1) O(2). Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2) concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2)-sensitivity of anammox itself, and not by any effects of O(2) on the tightly coupled pathways of aerobic NH(3) oxidation and NO(3)(-) reduction. With anammox bacteria in the marine environment being active at O(2) levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2) sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.

摘要

营养物质测量表明,海洋中总氮 (N) 损失的 30-50%发生在缺氧区 (OMZs)。这种浮游生物 N 去除仅发生在海洋体积的0.1%范围内,因此由于全球变暖导致的 OMZs 范围的适度变化可能对全球 N 循环产生重大影响。我们在纳米比亚和秘鲁 OMZs 的(15)N 标记实验中,研究了氧气 (O(2)) 对厌氧氨氧化、NH(3) 氧化和 NO(3)(-) 还原的影响,实验中 O(2)浓度在 0-25 µmol L(-1) 之间变化。我们的结果表明,O(2)是 OMZ 水中厌氧氨氧化活性的主要控制因素。根据我们的 O(2)测定,我们估计厌氧氨氧化的上限约为20 µmol L(-1)。相比之下,NH(3)氧化为 NO(2)(-)和 NO(3)(-)还原为 NO(2)(-)作为厌氧氨氧化的主要 NH(4)(+)和 NO(2)(-)来源,仅受到 O(2)浓度变化的适度影响。有趣的是,有氧 NH(3)氧化在无法检测到的 O(2)浓度下是活跃的,而无氧 NO(3)(-)还原在至少 25 µmol L(-1) O(2)下是完全活跃的。因此,与之前假设的相比,OMZs 中的好氧和厌氧 N 循环途径可以在更大的 O(2)浓度范围内共存。N 损失发生的区域主要由厌氧氨氧化本身对 O(2)的敏感性控制,而不是由 O(2)对好氧 NH(3)氧化和 NO(3)(-)还原紧密偶联途径的任何影响控制。由于海洋环境中的厌氧氨氧化细菌在 O(2)水平下活跃,该水平比已知抑制其培养物的 O(2)水平高约 20 倍,因此潜在充当 N 汇的海洋体积增加了十倍。预测的 OMZs 扩张甚至会进一步扩大这个体积。我们的研究首次对与 N 损失直接和间接相关的过程的 O(2)敏感性进行了稳健估计。这些对于评估海洋脱氧对海洋 N 循环的影响至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ef/3247244/378bcc4dc0b1/pone.0029299.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验