Liu Xinyuan, Guo Lin, Morris Daniel, Kane Agnes B, Hurt Robert H
Department of Chemistry, Brown University, Providence, Rhode Island.
Carbon N Y. 2008 Mar;46(3):489-500. doi: 10.1016/j.carbon.2007.12.018.
There is substantial evidence for toxicity and/or carcinogenicity upon inhalation of pure transition metals in fine particulate form. Carbon nanotube catalyst residues may trigger similar metal-mediated toxicity, but only if the metal is bioavailable and not fully encapsulated within fluid-protective carbon shells. Recent studies have documented the presence of bioavailable iron and nickel in a variety of commercial as-produced and vendor "purified" nanotubes, and the present article examines techniques to avoid or remove this bioavailable metal. First, data are presented on the mechanisms potentially responsible for free metal in "purified" samples, including kinetic limitations during metal dissolution, the re-deposition or adsorption of metal on nanotube outer surfaces, and carbon shell damage during last-step oxidation or one-pot purification. Optimized acid treatment protocols are presented for targeting the free metal, considering the effects of acid strength, composition, time, and conditions for post-treatment water washing. Finally, after optimized acid treatment, it is shown that the remaining, non-bioavailable (encapsulated) metal persists in a stable and biologically unavailable form up to two months in an in vitro biopersistence assay, suggesting that simple removal of bioavailable (free) metal is a promising strategy for reducing nanotube health risks.
有大量证据表明,吸入细颗粒形式的纯过渡金属会产生毒性和/或致癌性。碳纳米管催化剂残留物可能引发类似的金属介导的毒性,但前提是金属具有生物可利用性且未完全包裹在液体保护碳壳内。最近的研究记录了各种商业生产的和供应商“纯化”的纳米管中存在生物可利用的铁和镍,本文探讨了避免或去除这种生物可利用金属的技术。首先,介绍了“纯化”样品中游离金属潜在的形成机制的数据,包括金属溶解过程中的动力学限制、金属在纳米管外表面的再沉积或吸附,以及最后一步氧化或一锅法纯化过程中的碳壳损伤。考虑到酸强度、组成、时间和后处理水洗条件的影响,提出了针对游离金属的优化酸处理方案。最后,经过优化的酸处理后,在体外生物持久性试验中表明,剩余的非生物可利用(包裹)金属在长达两个月的时间内以稳定且生物不可利用的形式存在,这表明简单去除生物可利用(游离)金属是降低纳米管健康风险的一种有前景的策略。