Tegopoulos Sokratis N, Ektirici Sisem, Harmandaris Vagelis, Kyritsis Apostolos, Rissanou Anastassia N, Papagiannopoulos Aristeidis
School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR-15772 Athens, Greece.
Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus.
Polymers (Basel). 2025 Aug 1;17(15):2125. doi: 10.3390/polym17152125.
Protein-polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions-such as temperature and pH-on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ's isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein-polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements.
通过静电相互作用组装而成的蛋白质 - 聚电解质纳米结构在生物医学、组织工程和食品科学领域有着广泛的应用。然而,关于它们的分子间相互作用以及外部条件(如温度和pH值)对其组装、稳定性和响应性的影响,仍存在一些未解决的问题。本研究采用实验和模拟相结合的方法,探索了热处理后聚(丙烯酸)(PAA)和溶菌酶(LYZ)在纳米尺度上网络的形成和稳定性。静态和动态光散射(SLS和DLS)、傅里叶变换红外光谱(FTIR)和圆二色性(CD)等实验技术与全原子分子动力学模拟相结合。由多个PAA和LYZ分子组成的模型系统探索了水溶液中的集体组装和络合作用。实验结果表明,在低于LYZ等电点的pH值下,PAA和LYZ之间发生静电络合。这导致形成半径在100至200nm之间的纳米颗粒(NP),在PAA/LYZ质量比为0.1时最为明显。这些络合物在pH 12时会分解,此时LYZ和PAA均带负电荷。然而,当对络合物进行热处理(TT)时,它们会保持稳定,这与早期的研究结果一致。原子模拟表明,热处理会引起部分可逆的结构变化,揭示了形成网络稳定化过程中涉及的关键微观特征。尽管在所有pH和温度条件下静电相互作用都占主导地位,但热诱导的构象变化会重新组织结合模式,导致热处理后LYZ和PAA之间的接触数量增加。与构象重排相关的水合作用变化成为热处理络合物稳定性的关键因素,特别是在pH 12时强静电排斥的条件下。此外,观察到网络内聚合物链的缔合增强,这在络合物稳定化中起着至关重要的作用。这些见解有助于蛋白质 - 聚电解质材料的合理设计,揭示了热诱导结构重排下缔合的起源。