Mondal Arghya, Sinha Sudeshna, Kurths Juergen
Centre for Dynamics of Complex Systems, University of Potsdam, Potsdam D-14415, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):066209. doi: 10.1103/PhysRevE.78.066209. Epub 2008 Dec 15.
We investigate the spatiotemporal properties of a lattice of chaotic maps whose coupling connections are rewired to random sites with probability p . Keeping p constant, we change the random links at different frequencies in order to discern the effect (if any) of the time dependence of the links. We observe two different regimes in this network: (i) when the network is rewired slowly, namely, when the random connections are quite static, the dynamics of the network is spatiotemporally chaotic and (ii) when these random links are switched around fast, namely, the network is rewired frequently, one obtains a spatiotemporal fixed point over a large range of coupling strengths. We provide evidence of a sharp transition from a globally attracting spatiotemporal fixed point to spatiotemporal chaos as the rewiring frequency is decreased. Thus, in addition to geometrical properties such as the fraction of random links in the network, dynamical information on the time dependence of these links is crucial in determining the spatiotemporal properties of complex dynamical networks.
我们研究了一个混沌映射晶格的时空特性,该晶格的耦合连接以概率(p)重新连接到随机位点。保持(p)不变,我们以不同频率改变随机连接,以辨别连接的时间依赖性所产生的影响(如果有的话)。我们在这个网络中观察到两种不同的状态:(i)当网络重新布线缓慢时,即当随机连接相当稳定时,网络的动力学是时空混沌的;(ii)当这些随机连接快速切换时,即网络频繁重新布线时,在大范围的耦合强度上会得到一个时空不动点。我们提供了证据表明,随着重新布线频率的降低,会从全局吸引的时空不动点急剧转变为时空混沌。因此,除了诸如网络中随机连接的比例等几何特性外,这些连接的时间依赖性的动力学信息对于确定复杂动态网络的时空特性至关重要。