Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
Indian Institute of Science Education and Research Mohali, Manauli P.O. 140 306, Punjab, India.
Phys Rev E. 2018 May;97(5-1):052304. doi: 10.1103/PhysRevE.97.052304.
We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f. We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.
我们研究了在时变网络结构中耦合的动力系统的同步,该网络结构由两个或更多的网络拓扑组成,对应于不同的相互作用方案。作为这种时变超网络的一个代表性例子,我们考虑了耦合的 Hindmarsh-Rose 神经元,涉及两种不同类型的网络,模拟了通过电间隙连接和化学突触发生的相互作用。具体来说,我们考虑对应于电间隙连接的连接形成小世界网络,而化学突触相互作用形成单向随机网络。此外,超网络中的所有连接都允许随时间变化,模拟更现实的神经生物学场景。我们通过以特征重连频率 f 随机重连链路来模拟这种时间变化。我们发现,当链路快速切换时,实现完全神经元同步所需的耦合强度更低。此外,随着突触耦合强度和/或重连频率的增加,达到同步状态所需的平均时间减少。为了量化完全同步状态的局部稳定性,我们使用主稳定性函数方法,为了全局稳定性,我们采用了基区稳定性的概念。同步的解析必要条件与数值结果非常吻合。此外,我们研究了同步状态对网络规模增加的弹性,发现通过增加突触强度或重连频率可以保持更大的网络规模的同步。最后,我们发现时变链路不仅促进了完全同步,而且还有能力改变每个单个神经元的局部动力学。具体来说,在重连频率和突触耦合强度的窗口内,我们观察到脉冲行为变得更加规则。