Suppr超能文献

六角形和蜂窝状晶格中的离散孤子与涡旋:存在性、稳定性及动力学

Discrete solitons and vortices in hexagonal and honeycomb lattices: existence, stability, and dynamics.

作者信息

Law K J H, Kevrekidis P G, Koukouloyannis V, Kourakis I, Frantzeskakis D J, Bishop A R

机构信息

Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):066610. doi: 10.1103/PhysRevE.78.066610. Epub 2008 Dec 29.

Abstract

We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrödinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the "hexapole" of alternating phases (0-pi) , as well as the vortex of topological charge S=2 have intervals of stability; among three-site states, only the vortex of topological charge S=1 may be stable in the case of focusing nonlinearity. These conclusions are confirmed both for hexagonal and for honeycomb lattices by means of detailed numerical bifurcation analysis of the stationary states from the anticontinuum limit, and by direct simulations to monitor the dynamical instabilities, when the latter arise. The dynamics reveal a wealth of nonlinear behavior resulting not only in single-site solitary wave forms, but also in robust multisite breathing structures.

摘要

我们考虑一个典型的动态晶格模型,即非方形晶格几何结构上的离散非线性薛定谔方程。我们对以离散多极孤子和离散涡旋形式出现在主要的六格点和三格点轮廓中的解进行了系统分类。除了识别可能的状态外,我们还定性和定量地分析跟踪它们的线性稳定性。我们发现,在六格点配置中,交替相位(0 - π)的“六极”以及拓扑电荷S = 2的涡旋具有稳定区间;在三格点状态中,对于聚焦非线性情况,只有拓扑电荷S = 1的涡旋可能是稳定的。通过对从反连续极限的稳态进行详细的数值分岔分析,以及通过直接模拟来监测动态不稳定性(当后者出现时),这些结论在六边形晶格和蜂窝晶格中都得到了证实。动力学揭示了丰富的非线性行为,不仅产生单格点孤波形式,还产生稳健的多格点呼吸结构。

相似文献

1
Discrete solitons and vortices in hexagonal and honeycomb lattices: existence, stability, and dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):066610. doi: 10.1103/PhysRevE.78.066610. Epub 2008 Dec 29.
2
Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016609. doi: 10.1103/PhysRevE.66.016609. Epub 2002 Jul 24.
3
Stable higher-order vortices and quasivortices in the discrete nonlinear Schrödinger equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):056612. doi: 10.1103/PhysRevE.70.056612. Epub 2004 Nov 18.
4
Localized vortices with a semi-integer charge in nonlinear dynamical lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 2):016605. doi: 10.1103/PhysRevE.65.016605. Epub 2001 Dec 18.
5
Three-dimensional solitary waves and vortices in a discrete nonlinear Schrödinger lattice.
Phys Rev Lett. 2004 Aug 20;93(8):080403. doi: 10.1103/PhysRevLett.93.080403. Epub 2004 Aug 19.
6
Discrete solitons and vortices on anisotropic lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046613. doi: 10.1103/PhysRevE.72.046613. Epub 2005 Oct 28.
7
Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):043201. doi: 10.1103/PhysRevE.91.043201. Epub 2015 Apr 7.
8
Discrete vortex solitons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026601. doi: 10.1103/PhysRevE.64.026601. Epub 2001 Jul 10.
9
Charge flipping vortices in the discrete nonlinear Schrödinger trimer and hexamer.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022910. doi: 10.1103/PhysRevE.91.022910. Epub 2015 Feb 13.
10
Vortex solitons at the boundaries of photonic lattices.
Opt Express. 2011 Dec 19;19(27):26232-8. doi: 10.1364/OE.19.026232.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验