Kevrekidis P G, Malomed B A, Gaididei Yu B
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016609. doi: 10.1103/PhysRevE.66.016609. Epub 2002 Jul 24.
We study the existence and stability of localized states in the discrete nonlinear Schrödinger equation on two-dimensional nonsquare lattices. The model includes both the nearest-neighbor and long-range interactions. For the fundamental strongly localized soliton, the results depend on the coordination number, i.e., on the particular type of lattice. The long-range interactions additionally destabilize the discrete soliton, or make it more stable, if the sign of the interaction is, respectively, the same as or opposite to the sign of the short-range interaction. We also explore more complicated solutions, such as twisted localized modes and solutions carrying multiple topological charge (vortices) that are specific to the triangular and honeycomb lattices. In the cases when such vortices are unstable, direct simulations demonstrate that they typically turn into zero-vorticity fundamental solitons.
我们研究二维非方形晶格上离散非线性薛定谔方程中局域态的存在性和稳定性。该模型包括最近邻相互作用和长程相互作用。对于基本的强局域孤子,结果取决于配位数,即取决于晶格的特定类型。如果长程相互作用的符号分别与短程相互作用的符号相同或相反,那么长程相互作用会额外使离散孤子不稳定或使其更稳定。我们还探索了更复杂的解,比如扭曲局域模以及携带多个拓扑电荷(涡旋)的解,这些解是三角形和蜂窝晶格所特有的。在这些涡旋不稳定的情况下,直接模拟表明它们通常会变成零涡度的基本孤子。