Suppr超能文献

训练诱导的血管对缺血肌肉的适应性变化。

Training-induced vascular adaptations to ischemic muscle.

作者信息

Yang H T, Prior B M, Lloyd P G, Taylor J C, Li Z, Laughlin M H, Terjung R L

机构信息

Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.

出版信息

J Physiol Pharmacol. 2008 Dec;59 Suppl 7(Suppl 7):57-70.

Abstract

Peripheral arterial insufficiency is a progressive degenerative disease associated with an increased morbidity and mortality. It decreases exercise tolerance and often presents with symptoms of intermittent claudication. Enhanced physical activity is one of the most effective means of improving the life of affected patients. While this occurs for a variety of reasons, vascular remodeling can be an important means for improved oxygen exchange and blood flow delivery. Relevant exercise-induced signals stimulate angiogenesis, within the active muscle (e.g. hypoxia), and arteriogenesis (enlargement of pre-existing vessels via increased shear stress) to increase oxygen exchange and blood flow capacity, respectively. Evidence from pre-clinical studies shows that the increase in collateral blood flow observed with exercise progresses over time of training, is accompanied by significant enlargement of isolated collateral vessels, and enhances the responses observed with angiogenic growth factors (e.g. VEGF, FGF-2). Thus, enhanced physical activity can be an effective means of enlarging the structure and function of the collateral circuit. Interestingly, disrupting normal NO production (via L-NAME) eliminates this increase in collateral blood flow induced by training, but does not disturb the increase in muscle capillarity within the active muscle. Similarly, inhibiting VEGF receptor kinase activity eliminates the increase in collateral-dependent blood flow, and lessens, but does not eliminate, angiogenesis within the calf muscle. These findings illustrate distinctions between the processes influencing angiogenesis and arteriogenesis. Further, sympathetic modulation of the collateral circuit does not eliminate the increase in collateral circuit conductance induced by exercise training. These findings indicate that structural enlargement of the collateral vessels is essential to realize the increase in collateral-dependent blood flow capacity caused by exercise training. This raises the potential that meaningful vascular remodeling can occur in patients with intermittent claudication who actively participate in exercise training.

摘要

外周动脉供血不足是一种进行性退行性疾病,与发病率和死亡率的增加相关。它会降低运动耐量,常伴有间歇性跛行症状。增强体力活动是改善受影响患者生活的最有效手段之一。虽然其发生原因多种多样,但血管重塑可能是改善氧交换和血流输送的重要手段。相关的运动诱导信号会刺激活跃肌肉内的血管生成(如缺氧)和动脉生成(通过增加剪切应力使原有血管扩大),分别增加氧交换和血流能力。临床前研究的证据表明,运动时观察到的侧支血流增加会随着训练时间的推移而进展,伴有孤立侧支血管的显著扩大,并增强血管生成生长因子(如血管内皮生长因子、碱性成纤维细胞生长因子-2)所观察到的反应。因此,增强体力活动可以是扩大侧支循环结构和功能的有效手段。有趣的是,破坏正常的一氧化氮生成(通过左旋硝基精氨酸甲酯)会消除训练诱导的侧支血流增加,但不会干扰活跃肌肉内的肌毛细血管增加。同样,抑制血管内皮生长因子受体激酶活性会消除侧支依赖性血流的增加,并减少但不会消除小腿肌肉内的血管生成。这些发现说明了影响血管生成和动脉生成过程之间的区别。此外,对侧支循环的交感神经调节并不能消除运动训练诱导的侧支循环电导增加。这些发现表明,侧支血管的结构扩大对于实现运动训练引起的侧支依赖性血流能力增加至关重要。这增加了积极参与运动训练的间歇性跛行患者可能发生有意义的血管重塑的可能性。

相似文献

1
Training-induced vascular adaptations to ischemic muscle.
J Physiol Pharmacol. 2008 Dec;59 Suppl 7(Suppl 7):57-70.
2
VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise-trained rats.
Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H759-68. doi: 10.1152/ajpheart.00786.2004. Epub 2004 Oct 7.
3
Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide.
Am J Physiol Heart Circ Physiol. 2001 Dec;281(6):H2528-38. doi: 10.1152/ajpheart.2001.281.6.H2528.
4
Arteriogenesis: role of nitric oxide.
Endothelium. 2003;10(4-5):207-16. doi: 10.1080/10623320390246388.
5
Regulation of coronary blood flow during exercise.
Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006.
6
VEGF(121)- and bFGF-induced increase in collateral blood flow requires normal nitric oxide production.
Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1097-104. doi: 10.1152/ajpheart.2001.280.3.H1097.
7
Exercise training for claudication.
N Engl J Med. 2002 Dec 12;347(24):1941-51. doi: 10.1056/NEJMra021135.
8
Vasoresponsiveness of collateral vessels in the rat hindlimb: influence of training.
J Physiol. 2010 Apr 15;588(Pt 8):1293-307. doi: 10.1113/jphysiol.2009.186247. Epub 2010 Mar 1.
9
Prior exercise training produces NO-dependent increases in collateral blood flow after acute arterial occlusion.
Am J Physiol Heart Circ Physiol. 2002 Jan;282(1):H301-10. doi: 10.1152/ajpheart.00160.2001.
10
Near infrared spectroscopy-guided exercise training for claudication in peripheral arterial disease.
Eur J Prev Cardiol. 2019 Mar;26(5):471-480. doi: 10.1177/2047487318795192. Epub 2018 Aug 28.

引用本文的文献

1
Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration.
Methodist Debakey Cardiovasc J. 2023 Nov 16;19(5):58-68. doi: 10.14797/mdcvj.1304. eCollection 2023.
2
Low Intrinsic Aerobic Capacity Limits Recovery Response to Hindlimb Ischemia.
Front Cardiovasc Med. 2021 Nov 22;8:752955. doi: 10.3389/fcvm.2021.752955. eCollection 2021.
4
The Oxygen Cascade During Exercise in Health and Disease.
Mayo Clin Proc. 2021 Apr;96(4):1017-1032. doi: 10.1016/j.mayocp.2020.06.063. Epub 2021 Mar 11.
5
Are There Limitations to Exercise Benefits in Peripheral Arterial Disease?
Front Cardiovasc Med. 2018 Nov 27;5:173. doi: 10.3389/fcvm.2018.00173. eCollection 2018.
6
Cardioprotection during ischemia by coronary collateral growth.
Am J Physiol Heart Circ Physiol. 2019 Jan 1;316(1):H1-H9. doi: 10.1152/ajpheart.00145.2018. Epub 2018 Oct 31.
7
Is Exercise Training Appropriate for Patients With Advanced Heart Failure Receiving Continuous Inotropic Infusion? A Review.
Clin Med Insights Cardiol. 2018 Jan 3;12:1179546817751438. doi: 10.1177/1179546817751438. eCollection 2018.
8
Multiple Benefits of Rehabilitation in a Patient with Heart and Renal Failure.
Arq Bras Cardiol. 2014 Nov;103(5):e68. doi: 10.5935/abc.20140127.
9
Adrenoreceptors and nitric oxide in the cardiovascular system.
Front Physiol. 2013 Nov 6;4:321. doi: 10.3389/fphys.2013.00321.
10
Therapeutic approaches in the stimulation of the coronary collateral circulation.
Curr Cardiol Rev. 2014 Feb;10(1):65-72. doi: 10.2174/1573403x113099990027.

本文引用的文献

1
Alpha-adrenergic and neuropeptide Y Y1 receptor control of collateral circuit conductance: influence of exercise training.
J Physiol. 2008 Dec 15;586(24):5983-98. doi: 10.1113/jphysiol.2008.160101. Epub 2008 Nov 3.
3
Calf muscle hemoglobin oxygen saturation characteristics and exercise performance in patients with intermittent claudication.
J Vasc Surg. 2008 Sep;48(3):644-9. doi: 10.1016/j.jvs.2008.04.005. Epub 2008 Jun 24.
4
Asymptomatic peripheral arterial disease is associated with more adverse lower extremity characteristics than intermittent claudication.
Circulation. 2008 May 13;117(19):2484-91. doi: 10.1161/CIRCULATIONAHA.107.736108. Epub 2008 May 5.
5
Vascular nitric oxide: effects of exercise training in animals.
Appl Physiol Nutr Metab. 2008 Feb;33(1):173-8. doi: 10.1139/H07-146.
6
Alpha-adrenergic inhibition increases collateral circuit conductance in rats following acute occlusion of the femoral artery.
J Physiol. 2008 Mar 15;586(6):1649-67. doi: 10.1113/jphysiol.2007.149567. Epub 2008 Jan 24.
7
Physical activity is a predictor of all-cause mortality in patients with intermittent claudication.
J Vasc Surg. 2008 Jan;47(1):117-22. doi: 10.1016/j.jvs.2007.09.033.
8
Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype.
J Appl Physiol (1985). 2008 Mar;104(3):588-600. doi: 10.1152/japplphysiol.01096.2007. Epub 2007 Dec 6.
10
Endothelial nitric oxide synthase activity is essential for vasodilation during blood flow recovery but not for arteriogenesis.
Arterioscler Thromb Vasc Biol. 2007 Sep;27(9):1926-33. doi: 10.1161/ATVBAHA.107.145375. Epub 2007 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验