Suppr超能文献

Bayesian mass spectra peak alignment from mass charge ratios.

作者信息

Liu Junfeng, Yu Weichuan, Wu Baolin, Zhao Hongyu

机构信息

Department of Statistics, West Virginia University, Morgantown, WV 26506, USA.

出版信息

Cancer Inform. 2008;6:217-41. Epub 2008 Apr 11.

Abstract

Proteomics studies based on mass spectrometry (MS) are gaining popular applications in biomedical research for protein identification/quantification and biomarker discovery, especially for potential early diagnosis and prognosis of severe disease before the occurrence of symptoms. However, MS data collected using current technologies are very noisy and appropriate data preprocessing is critical for successful applications of MS-based approaches. Among various data preprocessing steps, peak alignment from multiple spectra based on detected peak sample locations presents special statistical challenges when effective experimental calibration is not feasible due to relatively large peak location variation. To avoid intensive tuning parameter optimization, we propose a simple novel Bayesian algorithm "random grafting-pruning Markov chain Monte Carlo (RGPMCMC)" that can be applied to global MS peak alignment and to follow certain model-based sample classification criterion for using aligned peaks to classify spectrum samples. The usefulness of our approach is demonstrated through simulation study by making extensive comparison with other algorithms in the literature. Its application to an ovarian cancer MALDI-MS data set achieves a smaller 10-fold cross validation error rate than other current large scale methodologies.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验