Suppr超能文献

肾缺血再灌注损伤上调组蛋白修饰酶系统,并改变促炎/促纤维化基因处的组蛋白表达。

Renal ischemia-reperfusion injury upregulates histone-modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes.

作者信息

Zager Richard A, Johnson Ali C M

机构信息

Department of Medicine, University of Washington, and the Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, WA 98109, USA.

出版信息

Am J Physiol Renal Physiol. 2009 May;296(5):F1032-41. doi: 10.1152/ajprenal.00061.2009. Epub 2009 Mar 4.

Abstract

Ischemic renal injury can produce chronic renal inflammation and fibrosis. This study tested whether ischemia-reperfusion (I/R) activates histone-modifying enzyme systems and alters histone expression at selected proinflammatory/profibrotic genes. CD-1 mice were subjected to 30 min of unilateral I/R. Contralateral kidneys served as controls. At 1, 3, or 7 days of reflow, bilateral nephrectomy was performed. Renal cortices were probed for monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-beta1 (TGF-beta1), and collagen III mRNAs and cytokine levels. RNA polymerase II (Pol II) binding, which initiates transcription, was quantified at exon 1 of the MCP-1, TGF-beta1, collagen III genes (chromatin immunoprecipitation assay). Two representative gene-activating histone modifications [histone 3 lysine 4 (H3K4) trimethylation (m3) (H3K4m3); histone 2 variant H2A.Z] were sought. Degrees of binding of two relevant histone-modifying enzymes (Set1, BRG1) to target genes were assessed. Renal cortical Set1, BRG1, and H2A.Z mRNAs were measured. Finally, the potential utility of urinary mRNA concentrations as noninvasive markers of these in vivo processes was tested. I/R caused progressive increases in Pol II binding to MCP-1, TGF-beta1, and collagen III genes. Parallel increases in cognate mRNAs also were expressed. Progressive increases in renal cortical Set1, BRG1, H2A.Z mRNAs, and increased Set1/BRG1 binding to target genes occurred. These changes corresponded with: 1) progressive elevations of H3K4m3 and H2A.Z at each test gene; 2) increases in renal cortical TGF-beta1/MCP-1 cytokines; and 3) renal collagen deposition (assessed by histomorphology). Postischemic increases in urinary TGF-beta1, MCP-1, Set1, and BRG1 mRNAs were also observed. We conclude that: 1) I/R upregulates histone-modifying enzyme systems, 2) histone modifications at proinflammatory/profibrotic genes can result, and 3) urinary mRNA assessments may have utility for noninvasive monitoring of these in vivo events.

摘要

缺血性肾损伤可导致慢性肾炎症和纤维化。本研究检测了缺血再灌注(I/R)是否激活组蛋白修饰酶系统,并改变选定促炎/促纤维化基因的组蛋白表达。对CD-1小鼠进行30分钟的单侧I/R。对侧肾脏作为对照。在再灌注1、3或7天时,进行双侧肾切除术。检测肾皮质中的单核细胞趋化蛋白-1(MCP-1)、转化生长因子-β1(TGF-β1)、Ⅲ型胶原mRNA和细胞因子水平。在MCP-1、TGF-β1、Ⅲ型胶原基因的外显子1处对启动转录的RNA聚合酶II(Pol II)结合进行定量(染色质免疫沉淀分析)。寻找两种具有代表性的基因激活组蛋白修饰[组蛋白3赖氨酸4(H3K4)三甲基化(m3)(H3K4m3);组蛋白2变体H2A.Z]。评估两种相关组蛋白修饰酶(Set1、BRG1)与靶基因的结合程度。检测肾皮质Set1、BRG1和H2A.Z mRNA。最后,测试尿mRNA浓度作为这些体内过程的非侵入性标志物的潜在效用。I/R导致Pol II与MCP-1、TGF-β1和Ⅲ型胶原基因的结合逐渐增加。同源mRNA也平行增加。肾皮质Set1、BRG1、H2A.Z mRNA逐渐增加,Set1/BRG1与靶基因的结合增加。这些变化与以下情况相对应:1)每个测试基因处H3K4m3和H2A.Z逐渐升高;2)肾皮质TGF-β1/MCP-1细胞因子增加;3)肾胶原沉积(通过组织形态学评估)。缺血后尿中TGF-β1、MCP-1、Set-1和BRG1 mRNA也增加。我们得出结论:1)I/R上调组蛋白修饰酶系统;2)促炎/促纤维化基因处可发生组蛋白修饰;3)尿mRNA评估可能有助于对这些体内事件进行非侵入性监测。

相似文献

1
Renal ischemia-reperfusion injury upregulates histone-modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes.
Am J Physiol Renal Physiol. 2009 May;296(5):F1032-41. doi: 10.1152/ajprenal.00061.2009. Epub 2009 Mar 4.
2
Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F827-37. doi: 10.1152/ajprenal.00683.2009. Epub 2009 Dec 23.
3
Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and "end-stage" kidney disease.
Am J Physiol Renal Physiol. 2011 Dec;301(6):F1334-45. doi: 10.1152/ajprenal.00431.2011. Epub 2011 Sep 14.
4
BRG1 increases transcription of proinflammatory genes in renal ischemia.
J Am Soc Nephrol. 2009 Aug;20(8):1787-96. doi: 10.1681/ASN.2009010118. Epub 2009 Jun 25.
5
Uremia impacts renal inflammatory cytokine gene expression in the setting of experimental acute kidney injury.
Am J Physiol Renal Physiol. 2009 Oct;297(4):F961-70. doi: 10.1152/ajprenal.00381.2009. Epub 2009 Aug 5.
6
Endotoxin mediates recruitment of RNA polymerase II to target genes in acute renal failure.
J Am Soc Nephrol. 2008 Jul;19(7):1321-30. doi: 10.1681/ASN.2007121368. Epub 2008 Apr 16.
7
BRG1 regulates endothelial-derived IL-33 to promote ischemia-reperfusion induced renal injury and fibrosis in mice.
Biochim Biophys Acta Mol Basis Dis. 2019 Sep 1;1865(9):2551-2561. doi: 10.1016/j.bbadis.2019.06.015. Epub 2019 Jun 19.
10
Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction.
Kidney Int. 2012 Jun;81(12):1226-38. doi: 10.1038/ki.2012.21. Epub 2012 Mar 14.

引用本文的文献

1
Hypoxia and Multilineage Communication in 3D Organoids for Human Disease Modeling.
Biomimetics (Basel). 2025 Sep 16;10(9):624. doi: 10.3390/biomimetics10090624.
2
Histone methylation of kidney disease: fact or fantasy?
Ren Fail. 2025 Dec;47(1):2538801. doi: 10.1080/0886022X.2025.2538801. Epub 2025 Sep 10.
3
Epigenetic memories induced by hypoxia in AKI-to-CKD transition.
Clin Exp Nephrol. 2025 Aug 20. doi: 10.1007/s10157-025-02745-1.
4
[Role of Histone Modifications in Acute Kidney Injury Progressing to Chronic Kidney Disease].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2023 Nov 20;54(6):1080-1084. doi: 10.12182/20231160506.
5
Hepatocellular Brg1 promotes CCl4-induced liver inflammation, ECM accumulation and fibrosis in mice.
PLoS One. 2023 Nov 30;18(11):e0294257. doi: 10.1371/journal.pone.0294257. eCollection 2023.
6
Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates.
Cureus. 2023 Oct 9;15(10):e46737. doi: 10.7759/cureus.46737. eCollection 2023 Oct.
7
Sex-specific epigenetic programming in renal fibrosis and inflammation.
Am J Physiol Renal Physiol. 2023 Nov 1;325(5):F578-F594. doi: 10.1152/ajprenal.00091.2023. Epub 2023 Aug 10.
9
Acute kidney disease: an overview of the epidemiology, pathophysiology, and management.
Kidney Res Clin Pract. 2023 Nov;42(6):686-699. doi: 10.23876/j.krcp.23.001. Epub 2023 May 11.

本文引用的文献

1
Contribution of stem cells to kidney repair.
Curr Stem Cell Res Ther. 2009 Jan;4(1):2-8. doi: 10.2174/157488809787169129.
3
Renal recovery after severe acute renal injury.
Eur J Med Res. 2008 Dec 3;13(12):552-6.
4
Renal recovery following acute kidney injury.
Curr Opin Crit Care. 2008 Dec;14(6):660-5. doi: 10.1097/MCC.0b013e328317ee6e.
5
VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury.
Am J Physiol Renal Physiol. 2008 Dec;295(6):F1648-57. doi: 10.1152/ajprenal.00099.2008. Epub 2008 Sep 17.
6
Long-term outcomes of acute kidney injury.
Adv Chronic Kidney Dis. 2008 Jul;15(3):297-307. doi: 10.1053/j.ackd.2008.04.009.
7
Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation.
Curr Opin Cell Biol. 2008 Jun;20(3):341-8. doi: 10.1016/j.ceb.2008.03.019. Epub 2008 May 26.
8
The chromatin-remodeling enzyme BRG1 coordinates CIITA induction through many interdependent distal enhancers.
Nat Immunol. 2008 Jul;9(7):785-93. doi: 10.1038/ni.1619. Epub 2008 May 25.
9
The BRG1 transcriptional coregulator.
Nucl Recept Signal. 2008 Feb 1;6:e004. doi: 10.1621/nrs.06004.
10
Long-term outcome after acute kidney injury in critically-ill patients.
Acta Clin Belg. 2007;62 Suppl 2:337-40. doi: 10.1179/acb.2007.076.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验