Suppr超能文献

光抑制电荷密度波中协同原子运动的快照。

Snapshots of cooperative atomic motions in the optical suppression of charge density waves.

机构信息

Physics Department and Center of Applied Photonics and Zukunftskolleg, University of Konstanz, D-78457 Konstanz, Germany.

出版信息

Nature. 2010 Dec 9;468(7325):799-802. doi: 10.1038/nature09539. Epub 2010 Nov 24.

Abstract

Macroscopic quantum phenomena such as high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism arise from a delicate balance of different interactions among electrons, phonons and spins on the nanoscale. The study of the interplay among these various degrees of freedom in strongly coupled electron-lattice systems is thus crucial to their understanding and for optimizing their properties. Charge-density-wave (CDW) materials, with their inherent modulation of the electron density and associated periodic lattice distortion, represent ideal model systems for the study of such highly cooperative phenomena. With femtosecond time-resolved techniques, it is possible to observe these interactions directly by abruptly perturbing the electronic distribution while keeping track of energy relaxation pathways and coupling strengths among the different subsystems. Numerous time-resolved experiments have been performed on CDWs, probing the dynamics of the electronic subsystem. However, the dynamics of the periodic lattice distortion have been only indirectly inferred. Here we provide direct atomic-level information on the structural dynamics by using femtosecond electron diffraction to study the quasi two-dimensional CDW system 1T-TaS(2). Effectively, we have directly observed the atomic motions that result from the optically induced change in the electronic spatial distribution. The periodic lattice distortion, which has an amplitude of ∼0.1 Å, is suppressed by about 20% on a timescale (∼250 femtoseconds) comparable to half the period of the corresponding collective mode. These highly cooperative, electronically driven atomic motions are accompanied by a rapid electron-phonon energy transfer (∼350 femtoseconds) and are followed by fast recovery of the CDW (∼4 picoseconds). The degree of cooperativity in the observed structural dynamics is remarkable and illustrates the importance of obtaining atomic-level perspectives of the processes directing the physics of strongly correlated systems.

摘要

宏观量子现象,如高温超导、庞磁电阻、亚铁磁和铁磁,源自于电子、声子和自旋在纳米尺度上的不同相互作用之间的微妙平衡。因此,研究强耦合电子晶格系统中这些自由度之间的相互作用对于理解和优化它们的性质至关重要。电荷密度波(CDW)材料,由于其电子密度的固有调制和相关的周期性晶格畸变,是研究这种高度协同现象的理想模型体系。利用飞秒时间分辨技术,可以通过突然扰动电子分布来直接观察这些相互作用,同时跟踪不同子系统之间的能量弛豫途径和耦合强度。已经对 CDW 进行了大量的时间分辨实验,研究了电子子系统的动力学。然而,周期性晶格畸变的动力学只是间接地推断出来的。在这里,我们通过飞秒电子衍射研究准二维 CDW 体系 1T-TaS(2),直接提供了关于结构动力学的原子级信息。实际上,我们已经直接观察到了由电子空间分布的光诱导变化引起的原子运动。周期性晶格畸变的振幅约为 0.1Å,在与相应集体模式的一半周期相当的时间尺度(约 250 飞秒)内被抑制了约 20%。这些高度协同的、电子驱动的原子运动伴随着快速的电子-声子能量转移(约 350 飞秒),随后 CDW 快速恢复(约 4 皮秒)。观察到的结构动力学中的协同程度非常显著,说明了获得原子级视角对于指导强关联系统物理过程的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验