Suppr超能文献

一种用于对动物运动数据进行建模的简约方法。

A parsimonious approach to modeling animal movement data.

作者信息

Tremblay Yann, Robinson Patrick W, Costa Daniel P

机构信息

Institut de Recherche pour le Development, CRH UMR 212, Sète, France.

出版信息

PLoS One. 2009;4(3):e4711. doi: 10.1371/journal.pone.0004711. Epub 2009 Mar 5.

Abstract

Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are complicated and often time-consuming (state-space models), resulting in limited application of this technique and the potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature, bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks. Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location 50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (<0.94 degrees), and 90% were less than 199.8 km (<1.80 degrees). Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient, promising extensive utilization in future research.

摘要

动物追踪是生态学中一个不断发展的领域,先前的研究表明,对追踪数据进行简单的速度过滤是不够的,而且改进追踪位置估计是可行的。迄今为止,这需要复杂且通常耗时的方法(状态空间模型),导致该技术的应用有限,并且由于对该方法背后的基本框架理解不足而存在分析错误的可能性。我们描述并测试了一种替代的直观方法,该方法由受向前粒子偏差的自引导随机游走组成。该模型使用记录的数据精度估计,并且可以吸收其他数据源,如海面温度、测深和/或物理边界。我们使用同时携带PTT和GPS标签的海象的ARGOS和地理位置追踪数据对我们的模型进行了测试,从而能够进行真正的验证。在鳍足类动物中,海象是极端潜水者,在水面停留的时间很少,这对ARGOS和基于光的地理位置追踪的质量都有很大影响。尽管总体追踪质量较低,但我们的模型在海象ARGOS追踪质量高于、等于或低于平均水平时,分别有50%的时间能提供距离真实位置4.0、5.5和12.0公里以内的位置估计,90%的时间能提供距离真实位置9、10.5和20.0公里以内的位置估计。对于地理位置数据,50%的误差小于104.8公里(<0.94度),90%的误差小于199.8公里(<1.80度)。较大的误差是由于缺乏海面温度梯度。此外,我们表明我们的模型足够灵活,可以通过吸收高分辨率海岸线数据来解决避障问题。这将无效陆地位置的数量减少了近一个数量级。该方法直观、灵活且高效,有望在未来的研究中得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ab1/2650804/1796a733fd76/pone.0004711.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验