Drechsler F, Wolters C H, Dierkes T, Si H, Grasedyck L
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany.
Neuroimage. 2009 Jul 15;46(4):1055-65. doi: 10.1016/j.neuroimage.2009.02.024. Epub 2009 Mar 3.
A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.
数学偶极子在脑电图(EEG)源分析中被广泛用作初级电流源的模型。在支配的泊松型微分方程中,偶极子会导致右侧出现奇点,必须对其进行特殊处理。在本文中,我们将提出一种全减法方法,其中总电位被分为奇点电位和校正电位。奇点电位是由均匀电导率无限区域中的偶极子产生的。校正电位使用有限元(FE)方法计算。为了以实现线性基函数尽可能高的收敛阶数为目标来适当地评估右侧积分,我们采取了特别的措施。我们的新方法允许构建传递矩阵,以便快速计算各向异性体积导体的逆问题。一种约束德劳内四面体剖分(CDT)方法用于生成高质量的有限元网格。我们在具有高导电性脑脊液(CSF)和各向异性颅骨隔室的四层球体模型中验证了新方法。对于位于脑脊液隔室下方偏心距高达1毫米的径向和切向源,在具有36万个节点的CDT - FE模型中,我们实现了0.71%的最大相对误差,该模型在源奇点周围没有进行局部细化,因此适用于任意偶极子位置。据作者所知,全减法方法与高质量CDT网格的结合所带来的精度是此前尚未有过报道的。