Suppr超能文献

缺陷干扰颗粒对感染的多重打击抑制作用。

Multiple-hit inhibition of infection by defective interfering particles.

作者信息

Stauffer Thompson Kristen A, Rempala Grzegorz A, Yin John

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA.

Department of Mathematics, University of Louisville, Louisville, KY 40292, USA.

出版信息

J Gen Virol. 2009 Apr;90(Pt 4):888-899. doi: 10.1099/vir.0.005249-0. Epub 2009 Mar 4.

Abstract

Defective interfering particles (DIPs) are virus-like particles that arise during virus growth, fail to grow in the absence of virus, and replicate at the expense of virus during co-infections. The inhibitory effects of DIPs on virus growth are well established, but little is known about how DIPs influence their own growth. Here vesicular stomatitis virus (VSV) and its DIPs were used to co-infect BHK cells, and the effect of DIP dose on virus and DIP production was measured using a yield-reduction assay. The resulting dose-response data were used to fit and evaluate mathematical models that employed different assumptions. Our analysis supports a multiple-hit process where DIPs inhibit or promote virus and DIP production, depending on dose. Specifically, three regimes of co-infection were apparent: (i) low DIP - where both virus and DIPs are amplified, (ii) medium DIP - where amplification of both virus and DIPs is inhibited, and (iii) high DIP - with limited recovery of virus production and further inhibition of DIP growth. In addition, serial-passage infections enabled us to estimate the frequency of de novo DIP generation during virus amplification. Our combined experiments and models provide a means to understand better how DIPs quantitatively impact the growth of viruses and the spread of their infections.

摘要

缺陷干扰颗粒(DIPs)是在病毒生长过程中产生的类病毒颗粒,在没有病毒的情况下无法生长,并且在共感染期间以牺牲病毒为代价进行复制。DIPs对病毒生长的抑制作用已得到充分证实,但关于DIPs如何影响自身生长却知之甚少。在这里,水泡性口炎病毒(VSV)及其DIPs被用于共感染BHK细胞,并使用产量降低试验测量DIP剂量对病毒和DIP产生的影响。所得的剂量反应数据用于拟合和评估采用不同假设的数学模型。我们的分析支持一个多步过程,其中DIPs根据剂量抑制或促进病毒和DIP的产生。具体而言,共感染的三种情况很明显:(i)低DIP——病毒和DIPs都被扩增,(ii)中DIP——病毒和DIPs的扩增都被抑制,以及(iii)高DIP——病毒产生的恢复有限,且DIP生长进一步受到抑制。此外,连续传代感染使我们能够估计病毒扩增过程中从头产生DIP的频率。我们的综合实验和模型提供了一种更好地理解DIPs如何定量影响病毒生长及其感染传播的方法。

相似文献

1
Multiple-hit inhibition of infection by defective interfering particles.
J Gen Virol. 2009 Apr;90(Pt 4):888-899. doi: 10.1099/vir.0.005249-0. Epub 2009 Mar 4.
2
High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles.
J Virol. 2015 Nov 25;90(3):1599-612. doi: 10.1128/JVI.02190-15. Print 2016 Feb 1.
3
Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell.
J Virol. 2016 Jul 27;90(16):7552-7566. doi: 10.1128/JVI.00807-16. Print 2016 Aug 15.
5
Inhibition of infection spread by co-transmitted defective interfering particles.
PLoS One. 2017 Sep 15;12(9):e0184029. doi: 10.1371/journal.pone.0184029. eCollection 2017.
7
Viral interference by defective particles of vesicular stomatitis virus measured in individual cells.
Virology. 1980 Jul 15;104(1):247-52. doi: 10.1016/0042-6822(80)90385-2.
10
Multiscale model of defective interfering particle replication for influenza A virus infection in animal cell culture.
PLoS Comput Biol. 2021 Sep 7;17(9):e1009357. doi: 10.1371/journal.pcbi.1009357. eCollection 2021 Sep.

引用本文的文献

1
Antivirotics based on defective interfering particles: emerging concepts and challenges.
Front Cell Infect Microbiol. 2025 Feb 24;15:1436026. doi: 10.3389/fcimb.2025.1436026. eCollection 2025.
2
Mathematical model calibrated to data predicts mechanisms of antiviral action of the influenza defective interfering particle "OP7".
iScience. 2024 Mar 5;27(4):109421. doi: 10.1016/j.isci.2024.109421. eCollection 2024 Apr 19.
3
Favipiravir Suppresses Zika Virus (ZIKV) through Activity as a Mutagen.
Microorganisms. 2023 May 19;11(5):1342. doi: 10.3390/microorganisms11051342.
4
Modeling the therapeutic potential of defective interfering particles in the presence of immunity.
Virus Evol. 2022 Jun 21;8(2):veac047. doi: 10.1093/ve/veac047. eCollection 2022.
6
Virus-like Particles: Measures and Biological Functions.
Viruses. 2022 Feb 14;14(2):383. doi: 10.3390/v14020383.
7
Experimental and mathematical insights on the interactions between poliovirus and a defective interfering genome.
PLoS Pathog. 2021 Sep 27;17(9):e1009277. doi: 10.1371/journal.ppat.1009277. eCollection 2021 Sep.
10
Defective Interfering Particles of Negative-Strand RNA Viruses.
Trends Microbiol. 2020 Jul;28(7):554-565. doi: 10.1016/j.tim.2020.02.006. Epub 2020 Mar 26.

本文引用的文献

1
Growth of an RNA virus in single cells reveals a broad fitness distribution.
Virology. 2009 Mar 1;385(1):39-46. doi: 10.1016/j.virol.2008.10.031. Epub 2008 Dec 13.
2
INTERFERENCE OF INACTIVE VIRUS WITH THE PROPAGATION OF VIRUS OF INFLUENZA.
Science. 1943 Jul 23;98(2534):87-9. doi: 10.1126/science.98.2534.87.
3
Model-based design of growth-attenuated viruses.
PLoS Comput Biol. 2006 Sep 1;2(9):e116. doi: 10.1371/journal.pcbi.0020116. Epub 2006 Jul 24.
4
Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes.
Science. 2006 Jan 13;311(5758):236-8. doi: 10.1126/science.1115030.
6
Plant virus satellite and defective interfering RNAs: new paradigms for a new century.
Annu Rev Phytopathol. 2004;42:415-37. doi: 10.1146/annurev.phyto.42.040803.140402.
7
Quantitative analysis of a parasitic antiviral strategy.
Antimicrob Agents Chemother. 2004 Mar;48(3):1017-20. doi: 10.1128/AAC.48.3.1017-1020.2004.
8
Some properties of the transmissible interfering component of vesicular stomatitis virus preparations.
J Gen Microbiol. 1959 Dec;21:498-509. doi: 10.1099/00221287-21-3-498.
9
Incomplete forms of influenza virus.
Adv Virus Res. 1954;2:59-79. doi: 10.1016/s0065-3527(08)60529-1.
10
Within-host spatial dynamics of viruses and defective interfering particles.
J Theor Biol. 2000 Sep 21;206(2):279-90. doi: 10.1006/jtbi.2000.2120.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验