Suppr超能文献

RNA 静电学:核酶如何设计活性部位以实现催化。

RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis.

机构信息

Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.

出版信息

J Phys Chem B. 2022 Aug 18;126(32):5982-5990. doi: 10.1021/acs.jpcb.2c03727. Epub 2022 Jul 21.

Abstract

Electrostatic interactions are fundamental to RNA structure and function, and intimately influenced by solvation and the ion atmosphere. RNA enzymes, or ribozymes, are catalytic RNAs that are able to enhance reaction rates over a million-fold, despite having only a limited repertoire of building blocks and available set of chemical functional groups. Ribozyme active sites usually occur at junctions where negatively charged helices come together, and in many cases leverage this strained electrostatic environment to recruit metal ions in solution that can assist in catalysis. Similar strategies have been implicated in related artificially engineered DNA enzymes. Herein, we apply Poisson-Boltzmann, 3D-RISM, and molecular simulations to study a set of metal-dependent small self-cleaving ribozymes (hammerhead, pistol, and Varkud satellite) as well as an artificially engineered DNAzyme (8-17) to examine electrostatic features and their relation to the recruitment of monovalent and divalent metal ions important for activity. We examine several fundamental roles for these ions that include: (1) structural integrity of the catalytically active state, (2) p tuning of residues involved in acid-base catalysis, and (3) direct electrostatic stabilization of the transition state via Lewis acid catalysis. Taken together, these examples demonstrate how RNA electrostatics orchestrates the site-specific and territorial binding of metal ions to play important roles in catalysis.

摘要

静电相互作用是 RNA 结构和功能的基础,并且受到溶剂化和离子气氛的密切影响。RNA 酶,即核酶,是能够将反应速率提高上百万倍的催化 RNA,尽管它们只有有限的构建块和可用的化学官能团集合。核酶活性位点通常发生在带负电荷的螺旋聚集的连接处,在许多情况下,利用这种紧张的静电环境来招募溶液中的金属离子,以协助催化。类似的策略在相关的人工工程 DNA 酶中也有涉及。在此,我们应用泊松-玻尔兹曼、3D-RISM 和分子模拟来研究一组依赖金属的小自我切割核酶(锤头、手枪和 Varkud 卫星)以及人工工程化的 DNA 酶(8-17),以研究静电特征及其与活性所需的单价和二价金属离子的招募之间的关系。我们研究了这些离子的几个基本作用,包括:(1)催化活性状态的结构完整性,(2)涉及酸碱催化的残基的 p 调谐,以及(3)通过路易斯酸催化直接静电稳定过渡态。综上所述,这些例子展示了 RNA 静电如何协调特定部位和区域性地结合金属离子,以在催化中发挥重要作用。

相似文献

1
RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis.RNA 静电学:核酶如何设计活性部位以实现催化。
J Phys Chem B. 2022 Aug 18;126(32):5982-5990. doi: 10.1021/acs.jpcb.2c03727. Epub 2022 Jul 21.
4
Multiple roles of metal ions in large ribozymes.金属离子在大型核酶中的多重作用。
Met Ions Life Sci. 2011;9:197-234. doi: 10.1039/9781849732512-00197.
6
Charged nucleobases and their potential for RNA catalysis.带电荷的碱基及其在 RNA 催化中的潜力。
Acc Chem Res. 2011 Dec 20;44(12):1270-9. doi: 10.1021/ar2000452. Epub 2011 Jul 6.
7
Catalytic strategies of self-cleaving ribozymes.自我切割核酶的催化策略。
Acc Chem Res. 2008 Aug;41(8):1027-35. doi: 10.1021/ar800050c. Epub 2008 Jul 25.
8
Identification of catalytic metal ion ligands in ribozymes.核酶中催化金属离子配体的鉴定。
Methods. 2009 Oct;49(2):148-66. doi: 10.1016/j.ymeth.2009.07.005. Epub 2009 Aug 3.

引用本文的文献

4
The Role of General Acid Catalysis in the Mechanism of an Alkyl Transferase Ribozyme.一般酸催化在烷基转移酶核酶机制中的作用。
ACS Catal. 2024 Oct 2;14(20):15294-15305. doi: 10.1021/acscatal.4c04571. eCollection 2024 Oct 18.
6
Surface-Accelerated String Method for Locating Minimum Free Energy Paths.用于定位最小自由能路径的表面加速弦方法
J Chem Theory Comput. 2024 Mar 12;20(5):2058-2073. doi: 10.1021/acs.jctc.3c01401. Epub 2024 Feb 17.

本文引用的文献

10
Detecting Counterion Dynamics in DNA-Protein Association.检测 DNA-蛋白质结合中的反离子动力学。
Angew Chem Int Ed Engl. 2020 Jan 20;59(4):1465-1468. doi: 10.1002/anie.201910960. Epub 2019 Dec 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验