Suppr超能文献

利用 MONOLIX 软件中的 SAEM 算法估算无症状 HIV 受试者中马拉维若的群体药代动力学-药效学-病毒动力学参数。

The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects.

机构信息

Global Pharmacometrics, Pfizer Primary Care Business Unit, Sandwich, Kent, UK.

出版信息

J Pharmacokinet Pharmacodyn. 2011 Feb;38(1):41-61. doi: 10.1007/s10928-010-9175-z. Epub 2010 Nov 19.

Abstract

Using simulated viral load data for a given maraviroc monotherapy study design, the feasibility of different algorithms to perform parameter estimation for a pharmacokinetic-pharmacodynamic-viral dynamics (PKPD-VD) model was assessed. The assessed algorithms are the first-order conditional estimation method with interaction (FOCEI) implemented in NONMEM VI and the SAEM algorithm implemented in MONOLIX version 2.4. Simulated data were also used to test if an effect compartment and/or a lag time could be distinguished to describe an observed delay in onset of viral inhibition using SAEM. The preferred model was then used to describe the observed maraviroc monotherapy plasma concentration and viral load data using SAEM. In this last step, three modelling approaches were compared; (i) sequential PKPD-VD with fixed individual Empirical Bayesian Estimates (EBE) for PK, (ii) sequential PKPD-VD with fixed population PK parameters and including concentrations, and (iii) simultaneous PKPD-VD. Using FOCEI, many convergence problems (56%) were experienced with fitting the sequential PKPD-VD model to the simulated data. For the sequential modelling approach, SAEM (with default settings) took less time to generate population and individual estimates including diagnostics than with FOCEI without diagnostics. For the given maraviroc monotherapy sampling design, it was difficult to separate the viral dynamics system delay from a pharmacokinetic distributional delay or delay due to receptor binding and subsequent cellular signalling. The preferred model included a viral load lag time without inter-individual variability. Parameter estimates from the SAEM analysis of observed data were comparable among the three modelling approaches. For the sequential methods, computation time is approximately 25% less when fixing individual EBE of PK parameters with omission of the concentration data compared with fixed population PK parameters and retention of concentration data in the PD-VD estimation step. Computation times were similar for the sequential method with fixed population PK parameters and the simultaneous PKPD-VD modelling approach. The current analysis demonstrated that the SAEM algorithm in MONOLIX is useful for fitting complex mechanistic models requiring multiple differential equations. The SAEM algorithm allowed simultaneous estimation of PKPD and viral dynamics parameters, as well as investigation of different model sub-components during the model building process. This was not possible with the FOCEI method (NONMEM version VI or below). SAEM provides a more feasible alternative to FOCEI when facing lengthy computation times and convergence problems with complex models.

摘要

利用给定的马拉维若单药治疗研究设计的模拟病毒载量数据,评估了不同算法用于药代动力学-药效动力学-病毒动力学(PKPD-VD)模型参数估计的可行性。评估的算法是一阶条件估计方法与交互作用(FOCEI),它在 NONMEM VI 中实现,以及在 MONOLIX 版本 2.4 中实现的简化分析法(SAEM)。还使用模拟数据来测试是否可以区分效应室和/或滞后时间,以使用 SAEM 描述观察到的病毒抑制起始延迟。然后,使用首选模型使用 SAEM 描述观察到的马拉维若单药治疗的血浆浓度和病毒载量数据。在最后一步中,比较了三种建模方法;(i)顺序 PKPD-VD,具有用于 PK 的固定个体经验贝叶斯估计(EBE),(ii)顺序 PKPD-VD,具有固定的群体 PK 参数并包括浓度,以及(iii)同时 PKPD-VD。使用 FOCEI,许多(56%)收敛问题在拟合模拟数据的顺序 PKPD-VD 模型时遇到。对于顺序建模方法,SAEM(使用默认设置)比没有诊断的 FOCEI 生成包括诊断的群体和个体估计花费的时间更少。对于给定的马拉维若单药治疗采样设计,很难将病毒动力学系统延迟与药代动力学分布延迟或由于受体结合和随后的细胞信号传导引起的延迟分开。首选模型包括没有个体间变异性的病毒载量滞后时间。观察数据的 SAEM 分析中的参数估计在三种建模方法中是可比的。对于顺序方法,与固定群体 PK 参数和保留 PD-VD 估计步骤中的浓度数据相比,省略浓度数据并固定 PK 参数的个体 EBE 时,计算时间减少约 25%。对于具有固定群体 PK 参数的顺序方法和同时进行的 PKPD-VD 建模方法,计算时间相似。当前分析表明,MONOLIX 中的简化分析算法对于拟合需要多个微分方程的复杂机制模型非常有用。SAEM 算法允许同时估计 PKPD 和病毒动力学参数,以及在模型构建过程中研究不同的模型子组件。这在 FOCEI 方法(NONMEM 版本 VI 或更低版本)中是不可能的。当面对复杂模型的冗长计算时间和收敛问题时,SAEM 为 FOCEI 提供了一个更可行的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d7/3020311/053ba163b64a/10928_2010_9175_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验