IAME, UMR 1137, INSERM, University Paris Diderot, Sorbonne Paris Cité , Paris, France.
Pharm Res. 2017 Oct;34(10):2119-2130. doi: 10.1007/s11095-017-2217-0. Epub 2017 Jun 28.
In mixed models, the relative standard errors (RSE) and shrinkage of individual parameters can be predicted from the individual Bayesian information matrix (M). We proposed an approach accounting for data below the limit of quantification (LOQ) in M.
M is the sum of the expectation of the individual Fisher information (M) which can be evaluated by First-Order linearization and the inverse of random effect variance. We expressed the individual information as a weighted sum of predicted M for every possible design composing of measurements above and/or below LOQ. When evaluating M, we derived the likelihood expressed as the product of the likelihood of observed data and the probability for data to be below LOQ. The relevance of RSE and shrinkage predicted by M in absence or presence of data below LOQ were evaluated by simulations, using a pharmacokinetic/viral kinetic model defined by differential equations.
Simulations showed good agreement between predicted and observed RSE and shrinkage in absence or presence of data below LOQ. We found that RSE and shrinkage increased with sparser designs and with data below LOQ.
The proposed method based on M adequately predicted individual RSE and shrinkage, allowing for evaluation of a large number of scenarios without extensive simulations.
在混合模型中,可以根据个体贝叶斯信息矩阵(M)预测个体参数的相对标准误差(RSE)和收缩。我们提出了一种在 M 中考虑低于定量下限(LOQ)数据的方法。
M 是个体 Fisher 信息(M)的期望之和,可以通过一阶线性化和随机效应方差的倒数来评估。我们将个体信息表示为对由高于和/或低于 LOQ 的测量组成的每个可能设计的预测 M 的加权和。在评估 M 时,我们推导出了似然函数,它表示观测数据的似然函数与数据低于 LOQ 的概率的乘积。使用由微分方程定义的药代动力学/病毒动力学模型进行模拟,评估了在存在或不存在低于 LOQ 数据的情况下 M 预测的 RSE 和收缩的相关性。
模拟结果表明,在存在或不存在低于 LOQ 数据的情况下,预测的 RSE 和收缩与观察到的 RSE 和收缩之间具有良好的一致性。我们发现,RSE 和收缩随着设计的稀疏性增加和低于 LOQ 的数据增加而增加。
基于 M 的提出的方法充分预测了个体 RSE 和收缩,允许在不进行大量模拟的情况下评估大量场景。