Suppr超能文献

作为基于光动力疗法的放射增敏剂的纳米闪烁体缀合物:所需物理参数的计算

Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters.

作者信息

Morgan Nicole Y, Kramer-Marek Gabriela, Smith Paul D, Camphausen Kevin, Capala Jacek

机构信息

Laboratory of Bioengineering and Physical Science, NIBIB, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Radiat Res. 2009 Feb;171(2):236-44. doi: 10.1667/RR1470.1.

Abstract

The recent demonstration of nanoscale scintillators has led to interest in the combination of radiation and photodynamic therapy. In this model, scintillating nanoparticles conjugated to photosensitizers and molecular targeting agents would enhance the targeting and improve the efficacy of radiotherapy and extend the application of photodynamic therapy to deeply seated tumors. In this study, we calculated the physical parameters required for these nanoparticle conjugates to deliver cytotoxic levels of singlet oxygen at therapeutic radiation doses, drawing on the published literature from several disparate fields. Although uncertainties remain, it appears that the light yield of the nanoscintillators, the efficiency of energy transfer to the photosensitizers, and the cellular uptake of the nanoparticles all need to be fairly well optimized to observe a cytotoxic effect. Even so, the efficacy of the combination therapy will likely be restricted to X-ray energies below 300 keV, which limits the application to brachytherapy.

摘要

最近纳米级闪烁体的展示引发了人们对放射治疗与光动力治疗相结合的兴趣。在该模型中,与光敏剂和分子靶向剂共轭的闪烁纳米颗粒将增强靶向性,提高放射治疗的疗效,并将光动力治疗的应用扩展到深部肿瘤。在本研究中,我们借鉴了几个不同领域的已发表文献,计算了这些纳米颗粒缀合物在治疗性辐射剂量下递送细胞毒性水平单线态氧所需的物理参数。尽管仍存在不确定性,但似乎纳米闪烁体的光产额、能量转移到光敏剂的效率以及纳米颗粒的细胞摄取都需要得到相当好的优化,才能观察到细胞毒性作用。即便如此,联合治疗的疗效可能会限于300 keV以下的X射线能量,这限制了其在近距离放射治疗中的应用。

相似文献

2
PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy.
Acta Biomater. 2020 Nov;117:335-348. doi: 10.1016/j.actbio.2020.09.029. Epub 2020 Sep 19.
4
Energy Partitioning in Multicomponent Nanoscintillators for Enhanced Localized Radiotherapy.
ACS Appl Mater Interfaces. 2023 May 24;15(20):24693-24700. doi: 10.1021/acsami.3c00853. Epub 2023 May 12.
5
Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy.
Nat Commun. 2022 Aug 30;13(1):5091. doi: 10.1038/s41467-022-32054-0.
6
Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.
ACS Nano. 2016 Apr 26;10(4):3918-35. doi: 10.1021/acsnano.6b01401. Epub 2016 Apr 8.
8
Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy.
Int J Mol Sci. 2022 Aug 5;23(15):8736. doi: 10.3390/ijms23158736.
9
Scintillation Yield Estimates of Colloidal Cerium-Doped LaF Nanoparticles and Potential for "Deep PDT".
Radiat Res. 2018 Jul;190(1):28-36. doi: 10.1667/RR14944.1. Epub 2018 Apr 19.
10
Nanoscintillator-Based X-Ray-Induced Photodynamic Therapy.
Methods Mol Biol. 2022;2394:811-822. doi: 10.1007/978-1-0716-1811-0_42.

引用本文的文献

1
Engineering photodynamics for treatment, priming and imaging.
Nat Rev Bioeng. 2024 Sep;2(9):752-769. doi: 10.1038/s44222-024-00196-z. Epub 2024 Jun 19.
2
Modeling synergy and individual effects of X-ray induced photodynamic therapy components.
Sci Rep. 2025 Jan 2;15(1):453. doi: 10.1038/s41598-024-84766-6.
4
Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment.
Nanomaterials (Basel). 2023 Oct 30;13(21):2873. doi: 10.3390/nano13212873.
6
Recent advances, challenges, and opportunities of inorganic nanoscintillators.
Front Optoelectron. 2020 Jun;13(2):156-187. doi: 10.1007/s12200-020-1003-5. Epub 2020 May 28.
7
Potential Application of Photosensitizers With High-Z Elements for Synergic Cancer Therapy.
Front Pharmacol. 2022 Jun 28;13:921729. doi: 10.3389/fphar.2022.921729. eCollection 2022.
8
Morphologically controlled synthesis of ionic cesium iodide colloidal nanocrystals and electron beam-induced transformations.
RSC Adv. 2018 May 22;8(33):18519-18524. doi: 10.1039/c8ra02582g. eCollection 2018 May 17.
9
Photodynamic Therapy and Hyperthermia in Combination Treatment-Neglected Forces in the Fight against Cancer.
Pharmaceutics. 2021 Jul 27;13(8):1147. doi: 10.3390/pharmaceutics13081147.

本文引用的文献

1
Nanoscale energy deposition by X-ray absorbing nanostructures.
J Phys Chem B. 2007 Oct 11;111(40):11622-5. doi: 10.1021/jp075253u. Epub 2007 Sep 14.
3
Photodynamic therapy and cancer: a brief sightseeing tour.
Expert Opin Drug Deliv. 2007 Mar;4(2):131-48. doi: 10.1517/17425247.4.2.131.
4
LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases.
Breast Cancer Res Treat. 2006 Sep;99(2):163-76. doi: 10.1007/s10549-006-9199-7. Epub 2006 Jun 3.
5
Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment.
J Nanosci Nanotechnol. 2006 Apr;6(4):1159-66. doi: 10.1166/jnn.2006.327.
6
Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy.
Photochem Photobiol. 2006 May-Jun;82(3):617-25. doi: 10.1562/2005-05-11-IR-525.
7
Cell-specific targeting of nanoparticles by multivalent attachment of small molecules.
Nat Biotechnol. 2005 Nov;23(11):1418-23. doi: 10.1038/nbt1159. Epub 2005 Oct 23.
8
Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study.
Phys Med Biol. 2005 Aug 7;50(15):N163-73. doi: 10.1088/0031-9155/50/15/N01. Epub 2005 Jul 13.
9
Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro.
Phys Med Biol. 2005 Jun 7;50(11):2597-616. doi: 10.1088/0031-9155/50/11/011. Epub 2005 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验