Suppr超能文献

闪烁纳米颗粒作为增强光动力疗法的能量介质

Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.

作者信息

Kamkaew Anyanee, Chen Feng, Zhan Yonghua, Majewski Rebecca L, Cai Weibo

机构信息

Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University , Xi'an, Shaanxi 710071, China.

University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53705, United States.

出版信息

ACS Nano. 2016 Apr 26;10(4):3918-35. doi: 10.1021/acsnano.6b01401. Epub 2016 Apr 8.

Abstract

Achieving effective treatment of deep-seated tumors is a major challenge for traditional photodynamic therapy (PDT) due to difficulties in delivering light into the subsurface. Thanks to their great tissue penetration, X-rays hold the potential to become an ideal excitation source for activating photosensitizers (PS) that accumulate in deep tumor tissue. Recently, a wide variety of nanoparticles have been developed for this purpose. The nanoparticles are designed as carriers for loading various kinds of PSs and can facilitate the activation process by transferring energy harvested from X-ray irradiation to the loaded PS. In this review, we focus on recent developments of nanoscintillators with high energy transfer efficiency, their rational designs, as well as potential applications in next-generation PDT. Treatment of deep-seated tumors by using radioisotopes as an internal light source will also be discussed.

摘要

由于难以将光输送到深部组织,实现深部肿瘤的有效治疗是传统光动力疗法(PDT)面临的一项重大挑战。由于X射线具有很强的组织穿透能力,因此有潜力成为激活积聚在深部肿瘤组织中的光敏剂(PS)的理想激发源。最近,为此目的已开发出各种各样的纳米颗粒。这些纳米颗粒被设计为用于负载各种PS的载体,并且可以通过将从X射线照射收集的能量转移到负载的PS来促进激活过程。在这篇综述中,我们重点关注具有高能量转移效率的纳米闪烁体的最新进展、它们的合理设计以及在下一代PDT中的潜在应用。还将讨论使用放射性同位素作为内部光源治疗深部肿瘤的情况。

相似文献

1
Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.
ACS Nano. 2016 Apr 26;10(4):3918-35. doi: 10.1021/acsnano.6b01401. Epub 2016 Apr 8.
2
Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles.
ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12261-9. doi: 10.1021/acsami.5b03067. Epub 2015 May 26.
3
Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment.
Small. 2015 Nov 25;11(44):5860-87. doi: 10.1002/smll.201501923. Epub 2015 Sep 23.
4
Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications.
Theranostics. 2020 Jan 1;10(3):1296-1318. doi: 10.7150/thno.41578. eCollection 2020.
5
Two-photon excitation nanoparticles for photodynamic therapy.
Chem Soc Rev. 2016 Dec 21;45(24):6725-6741. doi: 10.1039/c6cs00442c. Epub 2016 Oct 5.
7
Interaction of Genetically Encoded Photosensitizers with Scintillating Nanoparticles for X-ray Activated Photodynamic Therapy.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2289-2302. doi: 10.1021/acsami.0c19041. Epub 2021 Jan 6.
9
Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy.
Macromol Rapid Commun. 2018 Mar;39(5). doi: 10.1002/marc.201700614. Epub 2017 Dec 18.
10
Nanocomposites for X-Ray Photodynamic Therapy.
Int J Mol Sci. 2020 Jun 3;21(11):4004. doi: 10.3390/ijms21114004.

引用本文的文献

2
Phototherapy in cancer treatment: strategies and challenges.
Signal Transduct Target Ther. 2025 Apr 2;10(1):115. doi: 10.1038/s41392-025-02140-y.
3
Treating Deep-Seated Tumors with Radiodynamic Therapy: Progress and Perspectives.
Pharmaceutics. 2024 Aug 28;16(9):1135. doi: 10.3390/pharmaceutics16091135.
4
Metal-Doping Strategy for Carbon-Based Sonosensitizer in Sonodynamic Therapy of Glioblastoma.
Adv Sci (Weinh). 2024 Sep;11(34):e2404230. doi: 10.1002/advs.202404230. Epub 2024 Jul 10.
5
Critical learning from industrial catalysis for nanocatalytic medicine.
Nat Commun. 2024 May 8;15(1):3857. doi: 10.1038/s41467-024-48319-9.
6
Targeting the organelle for radiosensitization in cancer radiotherapy.
Asian J Pharm Sci. 2024 Apr;19(2):100903. doi: 10.1016/j.ajps.2024.100903. Epub 2024 Mar 10.
7
Sustained and Localized Drug Depot Release Using Radiation-Activated Scintillating Nanoparticles.
Adv Mater. 2024 Jun;36(23):e2312326. doi: 10.1002/adma.202312326. Epub 2024 Mar 8.
9
Advances of hafnium based nanomaterials for cancer theranostics.
Front Chem. 2023 Nov 24;11:1283924. doi: 10.3389/fchem.2023.1283924. eCollection 2023.
10
X-ray excited luminescent nanoparticles for deep photodynamic therapy.
RSC Adv. 2023 Oct 16;13(43):30133-30150. doi: 10.1039/d3ra04984a. eCollection 2023 Oct 11.

本文引用的文献

3
Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment.
Small. 2015 Nov 25;11(44):5860-87. doi: 10.1002/smll.201501923. Epub 2015 Sep 23.
4
Review of biomedical Čerenkov luminescence imaging applications.
Biomed Opt Express. 2015 Jul 28;6(8):3053-65. doi: 10.1364/BOE.6.003053. eCollection 2015 Aug 1.
5
Nanoparticles for Radiation Therapy Enhancement: the Key Parameters.
Theranostics. 2015 Jun 11;5(9):1030-44. doi: 10.7150/thno.11642. eCollection 2015.
8
Intensity Enhanced Cerenkov Luminescence Imaging Using Terbium-Doped Gd2O2S Microparticles.
ACS Appl Mater Interfaces. 2015 Jun 10;7(22):11775-82. doi: 10.1021/acsami.5b00432. Epub 2015 Jun 1.
9
Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles.
ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12261-9. doi: 10.1021/acsami.5b03067. Epub 2015 May 26.
10
Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.
Small. 2015 Aug 26;11(32):4002-8. doi: 10.1002/smll.201500907. Epub 2015 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验