Vallaghé Sylvain, Clerc Maureen
Odysśee Team-Project, Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis 06902, France.
IEEE Trans Biomed Eng. 2009 Apr;56(4):988-95. doi: 10.1109/TBME.2008.2009315. Epub 2008 Nov 11.
The accuracy of forward models for EEG partly depends on the conductivity values of the head tissues. Yet, the influence of the conductivities on the model output is still not well understood. In this paper, we apply a variance-based sensitivity analysis method to the most common EEG forward models (three or four layers). This method is global because it quantifies the influence of each parameter with all the parameters varying at the same time. With nonlinear models, it helps to understand the interaction between parameters, which is not possible with simple sensitivity analyses (one-at-a-time variations, derivatives, and perturbations). By analyzing the potential topographies at the electrodes, we obtained several results. For a shallow dipole, the EEG topographies are mainly sensitive to the interaction between skull and scalp conductivities. It means that the variability of the EEG topographies is driven mostly by a function of skull and scalp conductivities. Similar results are presented for skull anisotropy and a current injection as performed in electrical impedance tomography. This global sensitivity analysis gives new information about EEG forward models--it identifies the main input parameters that need model refinement--and directions on how to calibrate these models.
脑电图正向模型的准确性部分取决于头部组织的电导率值。然而,电导率对模型输出的影响仍未得到很好的理解。在本文中,我们将基于方差的敏感性分析方法应用于最常见的脑电图正向模型(三层或四层)。该方法是全局性的,因为它在所有参数同时变化的情况下量化每个参数的影响。对于非线性模型,它有助于理解参数之间的相互作用,而这是简单敏感性分析(一次一个参数变化、导数和微扰)无法做到的。通过分析电极处的潜在地形图,我们得到了几个结果。对于浅偶极子,脑电图地形图主要对颅骨和头皮电导率之间的相互作用敏感。这意味着脑电图地形图的变异性主要由颅骨和头皮电导率的函数驱动。对于颅骨各向异性以及在电阻抗断层成像中进行的电流注入,也呈现了类似的结果。这种全局敏感性分析为脑电图正向模型提供了新信息——它确定了需要对模型进行改进的主要输入参数——以及如何校准这些模型的方向。