Limpiti Tulaya, Van Veen Barry D, Attias Hagai T, Nagarajan Srikantan S
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
IEEE Trans Biomed Eng. 2009 Mar;56(3):633-45. doi: 10.1109/TBME.2008.2008423. Epub 2008 Oct 31.
A spatiotemporal framework for estimating trial-to-trial variability in evoked response (ER) data is presented. Spatial and temporal bases capture the aspects of the response that are consistent across trials, while the basis expansion coefficients represent the variable components of the response. We focus on the simplest case of constant spatiotemporal response shape and varying amplitude across trials. Two different constraints on the amplitude evolution are employed to effectively integrate the individual responses and improve robustness at low SNR. The linear dynamical system response constraint estimates the current trial amplitude as an unknown constant scaling of the estimate in the previous trial plus zero-mean Gaussian noise with unknown variance. The independent response constraint estimates response amplitudes across trials as independent Gaussian random variables having unknown mean and variance. We develop a generalized expectation-maximization algorithm to obtain the maximum-likelihood (ML) estimates of the signal waveform, noise covariance matrix, and unknown constraint parameters. ML source localization is achieved by scanning the likelihood over different sets of spatial bases. We demonstrate the variability estimation and source localization effectiveness of the proposed algorithms using both real and simulated ER data.
提出了一种用于估计诱发反应(ER)数据中逐次试验变异性的时空框架。空间和时间基捕获了跨试验一致的反应方面,而基扩展系数表示反应的可变成分。我们关注最简单的情况,即时空反应形状恒定且跨试验幅度变化。对幅度演变采用两种不同的约束来有效整合个体反应并提高低信噪比时的稳健性。线性动态系统反应约束将当前试验幅度估计为前一试验估计值的未知常数缩放加上具有未知方差的零均值高斯噪声。独立反应约束将跨试验的反应幅度估计为具有未知均值和方差的独立高斯随机变量。我们开发了一种广义期望最大化算法,以获得信号波形、噪声协方差矩阵和未知约束参数的最大似然(ML)估计。通过在不同的空间基集上扫描似然性来实现ML源定位。我们使用真实和模拟的ER数据展示了所提出算法的变异性估计和源定位有效性。