Suppr超能文献

一种用于有噪声的脑磁图/脑电图数据集逐次试验变化的最大似然估计器。

A maximum-likelihood estimator for trial-to-trial variations in noisy MEG/EEG data sets.

作者信息

de Munck Jan Casper, Bijma Fetsje, Gaura Pawel, Sieluzycki Cezary Andrzej, Branco Maria Inês, Heethaar R M

机构信息

Department of Physics and Medical Technology of University Hospital of the Vrije Universiteit, 1081-HV Amsterdam, The Netherlands.

出版信息

IEEE Trans Biomed Eng. 2004 Dec;51(12):2123-8. doi: 10.1109/TBME.2004.836515.

Abstract

The standard procedure to determine the brain response from a multitrial evoked magnetoencephalography (MEG) or electroencephalography (EEG) data set is to average the individual trials of these data, time locked to the stimulus onset. When the brain responses vary from trial-to-trial this approach is false. In this paper, a maximum-likelihood estimator is derived for the case that the recorded data contain amplitude variations. The estimator accounts for spatially and temporally correlated background noise that is superimposed on the brain response. The model is applied to a series of 17 MEG data sets of normal subjects, obtained during median nerve stimulation. It appears that the amplitude of late component (30-120 ms) shows a systematic negative trend indicating a weakening response during stimulation time. For the early components (20-35 ms) no such a systematic effect was found. The model is furthermore applied on a MEG data set consisting of epileptic spikes of constant spatial distribution but varying polarity. For these data, the advantage of applying the model is that positive and negative spikes can be processed with a single model, thereby reducing the number of degrees of freedom and increasing the signal-to-noise ratio.

摘要

从多次试验诱发脑磁图(MEG)或脑电图(EEG)数据集中确定大脑反应的标准程序是对这些数据的各个试验进行平均,时间锁定在刺激开始时。当大脑反应在每次试验中都有所不同时,这种方法是错误的。在本文中,针对记录数据包含幅度变化的情况推导了最大似然估计器。该估计器考虑了叠加在大脑反应上的空间和时间相关背景噪声。该模型应用于在正中神经刺激期间获得的一系列17个正常受试者的MEG数据集。似乎晚期成分(30 - 120毫秒)的幅度呈现出系统的负趋势,表明在刺激期间反应减弱。对于早期成分(20 - 35毫秒),未发现这种系统效应。该模型还应用于一个由空间分布恒定但极性变化的癫痫棘波组成的MEG数据集。对于这些数据,应用该模型的优点是可以用单个模型处理正棘波和负棘波,从而减少自由度数量并提高信噪比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验