Suppr超能文献

NLGC:具有应用于 MEG 方向功能连接分析的网络局部格兰杰因果关系。

NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis.

机构信息

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Neuroimage. 2022 Oct 15;260:119496. doi: 10.1016/j.neuroimage.2022.119496. Epub 2022 Jul 21.

Abstract

Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from the MEG measurements, integrated with source localization, and employs the resulting parameter estimates to produce a precise statistical characterization of the detected GC links. We offer several theoretical and algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and application to MEG data from an auditory task involving tone processing from both younger and older participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-level characterization of neural activity during tone processing and resting state by delineating task- and age-related connectivity changes.

摘要

确定不同皮质区域之间网络活动的有向连通性对于理解感觉处理背后的神经机制至关重要。格兰杰因果关系(Granger causality,GC)在功能磁共振成像分析中被广泛用于此目的,但在这种情况下,时间分辨率较低,难以捕捉感觉处理背后的毫秒级相互作用。脑磁图(Magnetoencephalography,MEG)具有毫秒级的分辨率,但仅提供神经源的低维传感器级线性混合,这使得 GC 推断具有挑战性。传统方法分两个阶段进行:首先,使用源定位技术从 MEG 估计皮质源,然后在估计的源之间进行 GC 推断。然而,源估计中的时空偏差会传播到后续的 GC 分析阶段,可能导致假阳性和真正的 GC 链接缺失。在这里,我们引入了网络局部化格兰杰因果关系(Network Localized Granger Causality,NLGC)推断范式,该范式将源动态建模为潜在稀疏多元自回归过程,并直接从 MEG 测量中估计其参数,与源定位相结合,并利用所得参数估计来对检测到的 GC 链接进行精确的统计描述。我们在 NLGC 中提供了一些理论和算法创新,并通过全面的模拟和对涉及年轻和年长参与者的音调处理的听觉任务的 MEG 数据的应用进一步检验了其效用。我们的模拟研究表明,NLGC 在模型失配、网络大小和低信噪比方面具有明显的稳健性,而传统的两阶段方法会导致高假阳性和错误检测。我们还通过描绘与任务和年龄相关的连通性变化,展示了 NLGC 在揭示音调处理和静息状态期间神经活动的皮质网络水平特征方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3772/9435442/a1b1bc4f8a37/nihms-1831659-f0016.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验