Huang Lejian, Thompson Elizabeth A, Schmithorst Vincent, Holland Scott K, Talavage Thomas M
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
IEEE Trans Biomed Eng. 2009 Feb;56(2):518-21. doi: 10.1109/TBME.2008.2006017. Epub 2008 Oct 3.
In this paper, the architectures of three partially adaptive space-time adaptive processing (STAP) algorithms are introduced, one of which is explored in detail, that reduce dimensionality and improve tractability over fully adaptive STAP when used in the construction of brain activation maps in functional magnetic resonance imaging (fMRI). Computer simulations incorporating actual MRI noise and human data analysis indicate that element space partially adaptive STAP can attain close to the performance of fully adaptive STAP while significantly decreasing processing time and maximum memory requirements, and thus demonstrates potential in fMRI analysis.
本文介绍了三种部分自适应空时自适应处理(STAP)算法的架构,其中一种算法进行了详细探讨,这些算法在用于功能磁共振成像(fMRI)的脑激活图构建时,相较于完全自适应STAP能够降低维度并提高可处理性。结合实际MRI噪声的计算机模拟和人体数据分析表明,元素空间部分自适应STAP在显著减少处理时间和最大内存需求的同时,能够达到接近完全自适应STAP的性能,因此在fMRI分析中展现出潜力。