Suppr超能文献

使用具有前向和后向协方差平均的MUSIC算法从功能磁共振成像时间序列数据中检测皮层活动。

Detecting cortical activities from fMRI time-course data using the MUSIC algorithm with forward and backward covariance averaging.

作者信息

Sekihara K, Koizumi H

机构信息

Central Research Laboratory, Hitachi, Ltd., Tokyo, Japan.

出版信息

Magn Reson Med. 1996 Jun;35(6):807-13. doi: 10.1002/mrm.1910350604.

Abstract

A method is proposed for processing time-course fMRI data taken with successive single-shot echo-planar imaging. The proposed method uses a two-dimensional version of the multiple signal classification (MUSIC) algorithm and the technique called covariance averaging, both of which were developed in the field of sensor-array processing. The proposed method consists of four steps: calculate the averaged data covariance matrix, determine the number of activities using this covariance matrix, estimate the locations of the activities, and estimate their time evolution curves. Computer simulation results showed that a nearly fourfold improvement in the spatial resolution can be attained due to the method's super-resolution capability.

摘要

提出了一种用于处理通过连续单激发回波平面成像获取的时间历程功能磁共振成像(fMRI)数据的方法。所提出的方法使用了传感器阵列处理领域中开发的二维多重信号分类(MUSIC)算法和协方差平均技术。该方法包括四个步骤:计算平均数据协方差矩阵,使用此协方差矩阵确定活动数量,估计活动位置,以及估计它们的时间演变曲线。计算机模拟结果表明,由于该方法的超分辨率能力,空间分辨率可提高近四倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验