Suppr超能文献

在氨基酸饥饿期间,hnRNA结合蛋白hnRNP L和PTB是Cat-1精氨酸/赖氨酸转运体mRNA有效翻译所必需的。

The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation.

作者信息

Majumder Mithu, Yaman Ibrahim, Gaccioli Francesca, Zeenko Vladimir V, Wang Chuanping, Caprara Mark G, Venema Richard C, Komar Anton A, Snider Martin D, Hatzoglou Maria

机构信息

Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4954, USA.

出版信息

Mol Cell Biol. 2009 May;29(10):2899-912. doi: 10.1128/MCB.01774-08. Epub 2009 Mar 9.

Abstract

The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.

摘要

对氨基酸饥饿的反应涉及蛋白质合成的整体减少以及一些含有内部核糖体进入位点(IRES)的mRNA翻译增加。先前的研究表明,精氨酸/赖氨酸氨基酸转运体Cat-1的mRNA在氨基酸饥饿期间通过一种利用Cat-1 mRNA 5'非翻译区IRES的机制增加翻译。本文表明,多嘧啶序列结合蛋白(PTB)和一种hnRNA结合蛋白,即异质性核核糖核蛋白L(hnRNP L),在氨基酸饥饿期间促进Cat-1 mRNA的有效翻译。在饥饿期间,这两种蛋白与Cat-1 mRNA的结合增加,其动力学与IRES激活的动力学平行,尽管蛋白的水平和亚细胞分布没有变化。Cat-1 IRES内的CUUUCU序列对于PTB结合以及氨基酸饥饿期间的翻译诱导很重要。hnRNP L在体内与IRES或Cat-1 mRNA的结合独立于PTB结合,但不足以在氨基酸饥饿期间增加IRES活性或Cat-1 mRNA翻译。相反,PTB在体内与Cat-1 mRNA的结合需要hnRNP L。hnRNP L水平降低的细胞中整体蛋白质合成的减少表明hnRNP L在mRNA翻译中具有更广泛的作用。有人提出,在导致蛋白质合成整体减少的应激条件下,PTB和hnRNP L是通过IRES对Cat-1 mRNA翻译的正调控因子。

相似文献

2
Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability.
J Biol Chem. 2001 Apr 13;276(15):12285-91. doi: 10.1074/jbc.M009714200. Epub 2000 Dec 12.
4
Polypyrimidine tract-binding protein interacts with HnRNP L.
FEBS Lett. 1998 Apr 3;425(3):401-6. doi: 10.1016/s0014-5793(98)00269-5.
6
UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein.
Nucleic Acids Res. 2005 May 31;33(10):3095-108. doi: 10.1093/nar/gki611. Print 2005.
8
Polypyrimidine tract-binding protein inhibits translation of bip mRNA.
J Mol Biol. 2000 Nov 24;304(2):119-33. doi: 10.1006/jmbi.2000.4179.

引用本文的文献

2
The Repurposing of Cellular Proteins during Enterovirus A71 Infection.
Viruses. 2023 Dec 31;16(1):75. doi: 10.3390/v16010075.
3
hnRNPL expression dynamics in the embryo and placenta.
Gene Expr Patterns. 2023 Jun;48:119319. doi: 10.1016/j.gep.2023.119319. Epub 2023 May 4.
4
Factors Influencing Proteolysis and Protein Utilization in the Intestine of Pigs: A Review.
Animals (Basel). 2021 Dec 14;11(12):3551. doi: 10.3390/ani11123551.
6
Mining the Prognostic Value of HNRNPAB and Its Function in Breast Carcinoma.
Int J Genomics. 2020 May 13;2020:3750673. doi: 10.1155/2020/3750673. eCollection 2020.
7
Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors.
J Cancer. 2020 Mar 15;11(12):3502-3511. doi: 10.7150/jca.42645. eCollection 2020.
10
IRES Trans-Acting Factors, Key Actors of the Stress Response.
Int J Mol Sci. 2019 Feb 20;20(4):924. doi: 10.3390/ijms20040924.

本文引用的文献

1
Canonical initiation factor requirements of the Myc family of internal ribosome entry segments.
Mol Cell Biol. 2009 Mar;29(6):1565-74. doi: 10.1128/MCB.01283-08. Epub 2009 Jan 5.
2
A stress-responsive RNA switch regulates VEGFA expression.
Nature. 2009 Feb 12;457(7231):915-9. doi: 10.1038/nature07598. Epub 2008 Dec 21.
3
Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein.
Biochem Soc Trans. 2008 Aug;36(Pt 4):641-7. doi: 10.1042/BST0360641.
4
Post-transcriptional control of gene expression through subcellular relocalization of mRNA binding proteins.
Biochem Pharmacol. 2008 Dec 1;76(11):1395-403. doi: 10.1016/j.bcp.2008.05.022. Epub 2008 Jul 9.
5
Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling.
J Biol Chem. 2008 Aug 22;283(34):23274-87. doi: 10.1074/jbc.M801185200. Epub 2008 Jun 18.
7
MBNL1 associates with YB-1 in cytoplasmic stress granules.
J Neurosci Res. 2008 Jul;86(9):1994-2002. doi: 10.1002/jnr.21655.
8
Phosphorylation of eIF2 directs ATF5 translational control in response to diverse stress conditions.
J Biol Chem. 2008 Mar 14;283(11):7064-73. doi: 10.1074/jbc.M708530200. Epub 2008 Jan 14.
9
IRES-mediated pathways to polysomes: nuclear versus cytoplasmic routes.
Trends Microbiol. 2008 Jan;16(1):1-5. doi: 10.1016/j.tim.2007.11.001.
10
Diverse roles of hnRNP L in mammalian mRNA processing: a combined microarray and RNAi analysis.
RNA. 2008 Feb;14(2):284-96. doi: 10.1261/rna.725208. Epub 2007 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验