Schubert Walter, Gieseler Anne, Krusche Andreas, Hillert Reyk
Molecular Pattern Recognition Research Group, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany.
J Proteome Res. 2009 Jun;8(6):2696-707. doi: 10.1021/pr800944f.
The toponome imaging technology MELC/TIS was applied to analyze prostate cancer tissue. By cyclical imaging procedures, we detected 2100 cell surface protein clusters in a single tissue section. This study provides the whole data set, a new kind of high dimensional data space, solely based on the structure-bound architecture of an in situ protein network, a putative fraction of the tissue code of prostate cancer. It is visualized as a colored mosaic composed of distinct protein clusters, together forming a motif expressed exclusively on the cell surface of neoplastic cells in prostate acini. Cell type specific expression of this motif, found in this preliminary study, suggests that high-throughput toponome analyses of a larger number of cases will provide insight into disease specific protein networks.
采用拓扑异构成像技术MELC/TIS对前列腺癌组织进行分析。通过循环成像程序,我们在单个组织切片中检测到2100个细胞表面蛋白簇。本研究仅基于原位蛋白网络的结构绑定架构提供了整个数据集,这是一种新型的高维数据空间,是前列腺癌组织编码的假定部分。它可视化为由不同蛋白簇组成的彩色镶嵌图,共同形成一种仅在前列腺腺泡肿瘤细胞表面表达的基序。在这项初步研究中发现的这种基序的细胞类型特异性表达表明,对大量病例进行高通量拓扑异构分析将有助于深入了解疾病特异性蛋白网络。