Suppr超能文献

果蝇胚胎气管生成受dVHL和缺氧的调控。

Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia.

作者信息

Mortimer Nathan T, Moberg Kenneth H

机构信息

Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.

出版信息

Dev Biol. 2009 May 15;329(2):294-305. doi: 10.1016/j.ydbio.2009.03.001. Epub 2009 Mar 11.

Abstract

The tracheal system of Drosophila melanogaster is an interconnected network of gas-filled epithelial tubes that develops during embryogenesis and functions as the main gas-exchange organ in the larva. Larval tracheal cells respond to hypoxia by activating a program of branching and growth driven by HIF-1alpha/sima-dependent expression of the breathless (btl) FGF receptor. By contrast, the ability of the developing embryonic tracheal system to respond to hypoxia and integrate hard-wired branching programs with sima-driven tracheal remodeling is not well understood. Here we show that embryonic tracheal cells utilize the conserved ubiquitin ligase dVHL to control the HIF-1 alpha/sima hypoxia response pathway, and identify two distinct phases of tracheal development with differing hypoxia sensitivities and outcomes: a relatively hypoxia-resistant 'early' phase during which sima activity conflicts with normal branching and stunts migration, and a relatively hypoxia-sensitive 'late' phase during which the tracheal system uses the dVHL/sima/btl pathway to drive increased branching and growth. Mutations in the archipelago (ago) gene, which antagonizes btl transcription, re-sensitize early embryos to hypoxia, indicating that their relative resistance can be reversed by elevating activity of the btl promoter. These findings reveal a second type of tracheal hypoxic response in which Sima activation conflicts with developmental tracheogenesis, and identify the dVHL and ago ubiquitin ligases as key determinants of hypoxia sensitivity in tracheal cells. The identification of an early stage of tracheal development that is vulnerable to hypoxia is an important addition to models of the invertebrate hypoxic response.

摘要

黑腹果蝇的气管系统是一个由充满气体的上皮管组成的相互连接的网络,它在胚胎发育过程中形成,并在幼虫期作为主要的气体交换器官发挥作用。幼虫气管细胞通过激活由低氧诱导因子-1α/西马(HIF-1α/sima)依赖的呼吸急促(btl)成纤维细胞生长因子受体表达驱动的分支和生长程序来应对缺氧。相比之下,发育中的胚胎气管系统对缺氧做出反应并将固有的分支程序与西马驱动的气管重塑整合的能力尚未得到很好的理解。在这里,我们表明胚胎气管细胞利用保守的泛素连接酶dVHL来控制HIF-1α/西马缺氧反应途径,并确定了气管发育的两个不同阶段,它们具有不同的缺氧敏感性和结果:一个相对抗缺氧的“早期”阶段,在此期间西马活性与正常分支冲突并阻碍迁移;以及一个相对缺氧敏感的“晚期”阶段,在此期间气管系统利用dVHL/西马/btl途径驱动分支和生长增加。群岛(ago)基因的突变拮抗btl转录,使早期胚胎对缺氧重新敏感,表明它们的相对抗性可以通过提高btl启动子的活性来逆转。这些发现揭示了第二种气管缺氧反应类型,其中西马激活与发育性气管发生冲突,并确定dVHL和ago泛素连接酶是气管细胞缺氧敏感性的关键决定因素。确定气管发育中一个易受缺氧影响的早期阶段是对无脊椎动物缺氧反应模型的重要补充。

相似文献

1
Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia.
Dev Biol. 2009 May 15;329(2):294-305. doi: 10.1016/j.ydbio.2009.03.001. Epub 2009 Mar 11.
3
Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis.
Dev Biol. 2017 Jul 1;427(1):35-48. doi: 10.1016/j.ydbio.2017.05.009. Epub 2017 May 11.
6
Identification of FGF-dependent genes in the Drosophila tracheal system.
Gene Expr Patterns. 2007 Jan;7(1-2):202-9. doi: 10.1016/j.modgep.2006.07.005. Epub 2006 Jul 21.
7
The bHLH transcription factor, hairy, refines the terminal cell fate in the Drosophila embryonic trachea.
PLoS One. 2010 Nov 30;5(11):e14134. doi: 10.1371/journal.pone.0014134.
8
Drosophila glypican Dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis.
Dev Biol. 2007 Dec 1;312(1):203-16. doi: 10.1016/j.ydbio.2007.09.015. Epub 2007 Sep 20.
10
Analysis of the hypoxia-sensing pathway in Drosophila melanogaster.
Biochem J. 2006 Jan 15;393(Pt 2):471-80. doi: 10.1042/BJ20050675.

引用本文的文献

1
Physiological Response of to CO Controlled Atmosphere Stress Under Trehalose Feeding.
Insects. 2025 Jul 26;16(8):768. doi: 10.3390/insects16080768.
2
Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster.
Mol Metab. 2025 Mar;93:102106. doi: 10.1016/j.molmet.2025.102106. Epub 2025 Jan 31.
3
Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in .
bioRxiv. 2025 Jan 8:2025.01.07.631819. doi: 10.1101/2025.01.07.631819.
4
eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle.
Dis Model Mech. 2024 Sep 1;17(9). doi: 10.1242/dmm.050729. Epub 2024 Aug 29.
5
Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer.
Cells. 2021 Sep 10;10(9):2387. doi: 10.3390/cells10092387.
6
Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease.
Int J Mol Sci. 2021 Apr 10;22(8):3918. doi: 10.3390/ijms22083918.
8
Endocrine regulation of airway clearance in .
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1535-1540. doi: 10.1073/pnas.1717257115. Epub 2018 Jan 31.
9
Building branched tissue structures: from single cell guidance to coordinated construction.
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2015.0527.
10
miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga.
PLoS Genet. 2016 May 25;12(5):e1006073. doi: 10.1371/journal.pgen.1006073. eCollection 2016 May.

本文引用的文献

1
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.
Mol Cell. 2008 May 23;30(4):393-402. doi: 10.1016/j.molcel.2008.04.009.
3
The Drosophila F-box protein Archipelago controls levels of the Trachealess transcription factor in the embryonic tracheal system.
Dev Biol. 2007 Dec 15;312(2):560-71. doi: 10.1016/j.ydbio.2007.10.002. Epub 2007 Oct 10.
5
Transcriptional specificity of Drosophila dysfusion and the control of tracheal fusion cell gene expression.
J Biol Chem. 2007 Sep 28;282(39):28659-28668. doi: 10.1074/jbc.M703803200. Epub 2007 Jul 25.
6
The RNAi pathway initiated by Dicer-2 in Drosophila.
Cold Spring Harb Symp Quant Biol. 2006;71:39-44. doi: 10.1101/sqb.2006.71.008.
8
Sensing and responding to hypoxia via HIF in model invertebrates.
J Insect Physiol. 2006 Apr;52(4):349-64. doi: 10.1016/j.jinsphys.2006.01.002. Epub 2006 Feb 28.
10
Analysis of the hypoxia-sensing pathway in Drosophila melanogaster.
Biochem J. 2006 Jan 15;393(Pt 2):471-80. doi: 10.1042/BJ20050675.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验