Suppr超能文献

生物标志物流行病学研究中异质性和多维性的团簇发现:CHAMBER算法

Clique-finding for heterogeneity and multidimensionality in biomarker epidemiology research: the CHAMBER algorithm.

作者信息

Mushlin Richard A, Gallagher Stephen, Kershenbaum Aaron, Rebbeck Timothy R

机构信息

PsychoGenics Inc, Tarrytown, NY, USA.

出版信息

PLoS One. 2009;4(3):e4862. doi: 10.1371/journal.pone.0004862. Epub 2009 Mar 16.

Abstract

BACKGROUND

Commonly-occurring disease etiology may involve complex combinations of genes and exposures resulting in etiologic heterogeneity. We present a computational algorithm that employs clique-finding for heterogeneity and multidimensionality in biomedical and epidemiological research (the "CHAMBER" algorithm).

METHODOLOGY/PRINCIPAL FINDINGS: This algorithm uses graph-building to (1) identify genetic variants that influence disease risk and (2) predict individuals at risk for disease based on inherited genotype. We use a set-covering algorithm to identify optimal cliques and a Boolean function that identifies etiologically heterogeneous groups of individuals. We evaluated this approach using simulated case-control genotype-disease associations involving two- and four-gene patterns. The CHAMBER algorithm correctly identified these simulated etiologies. We also used two population-based case-control studies of breast and endometrial cancer in African American and Caucasian women considering data on genotypes involved in steroid hormone metabolism. We identified novel patterns in both cancer sites that involved genes that sulfate or glucuronidate estrogens or catecholestrogens. These associations were consistent with the hypothesized biological functions of these genes. We also identified cliques representing the joint effect of multiple candidate genes in all groups, suggesting the existence of biologically plausible combinations of hormone metabolism genes in both breast and endometrial cancer in both races.

CONCLUSIONS

The CHAMBER algorithm may have utility in exploring the multifactorial etiology and etiologic heterogeneity in complex disease.

摘要

背景

常见疾病的病因可能涉及基因与暴露因素的复杂组合,从而导致病因的异质性。我们提出了一种计算算法,该算法在生物医学和流行病学研究中利用团发现来处理异质性和多维性(“CHAMBER”算法)。

方法/主要发现:该算法使用构建图来(1)识别影响疾病风险的基因变异,以及(2)根据遗传基因型预测有疾病风险的个体。我们使用集合覆盖算法来识别最优团,并使用布尔函数来识别病因上异质的个体组。我们使用涉及双基因和四基因模式的模拟病例对照基因型-疾病关联来评估这种方法。CHAMBER算法正确识别了这些模拟病因。我们还对非裔美国人和白人女性的乳腺癌和子宫内膜癌进行了两项基于人群的病例对照研究,考虑了类固醇激素代谢相关的基因型数据。我们在这两种癌症部位都发现了新的模式,这些模式涉及硫酸化或葡萄糖醛酸化雌激素或儿茶酚雌激素的基因。这些关联与这些基因的假设生物学功能一致。我们还在所有组中识别出代表多个候选基因联合效应的团,这表明在两个种族的乳腺癌和子宫内膜癌中都存在激素代谢基因的生物学上合理的组合。

结论

CHAMBER算法可能有助于探索复杂疾病的多因素病因和病因异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a411/2653643/a016724857ca/pone.0004862.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验