Suppr超能文献

一种用于研究病因异质性的概念和方法学框架。

A conceptual and methodological framework for investigating etiologic heterogeneity.

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, U.S.A.

出版信息

Stat Med. 2013 Dec 20;32(29):5039-52. doi: 10.1002/sim.5902. Epub 2013 Jul 16.

Abstract

Cancer has traditionally been studied using the disease site of origin as the organizing framework. However, recent advances in molecular genetics have begun to challenge this taxonomy, as detailed molecular profiling of tumors has led to discoveries of subsets of tumors that have profiles that possess distinct clinical and biological characteristics. This is increasingly leading to research that seeks to investigate whether these subtypes of tumors have distinct etiologies. However, research in this field has been opportunistic and anecdotal, typically involving the comparison of distributions of individual risk factors between tumors classified on the basis of candidate tumor characteristics. The purpose of this article is to place this area of investigation within a more general conceptual and analytic framework, with a view to providing more efficient and practical strategies for designing and analyzing epidemiologic studies to investigate etiologic heterogeneity. We propose a formal definition of etiologic heterogeneity and show how classifications of tumor subtypes with larger etiologic heterogeneities inevitably possess greater disease risk predictability overall. We outline analytic strategies for estimating the degree of etiologic heterogeneity among a set of subtypes and for choosing subtypes that optimize the heterogeneity, and we discuss technical challenges that require further methodologic research. We illustrate the ideas by using a pooled case-control study of breast cancer classified by expression patterns of genes known to define distinct tumor subtypes.

摘要

癌症传统上是根据起源部位来进行研究的。然而,分子遗传学的最新进展开始对这种分类法提出挑战,因为对肿瘤的详细分子分析发现,肿瘤可以分为不同的亚组,其特征具有明显的临床和生物学特征。这越来越多地导致研究人员探索这些肿瘤亚组是否具有不同的病因。然而,该领域的研究一直是机会主义的和传闻的,通常涉及根据候选肿瘤特征对肿瘤进行分类后,比较单个危险因素在肿瘤之间的分布。本文的目的是将这一研究领域置于一个更广泛的概念和分析框架内,以期为设计和分析流行病学研究以探讨病因异质性提供更有效和实用的策略。我们提出了病因异质性的正式定义,并表明具有较大病因异质性的肿瘤亚组分类不可避免地具有更高的总体疾病风险预测能力。我们概述了用于估计一组亚组之间病因异质性程度以及选择最佳优化异质性的亚组的分析策略,并讨论了需要进一步进行方法学研究的技术挑战。我们通过使用基于已知定义不同肿瘤亚型的基因表达模式对乳腺癌进行的一项病例对照研究来说明这些想法。

相似文献

引用本文的文献

9
Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness.子痫前期的亚型:识别与临床应用价值。
Hypertension. 2021 May 5;77(5):1430-1441. doi: 10.1161/HYPERTENSIONAHA.120.14781. Epub 2021 Mar 29.
10
Metallic air pollutants and breast cancer heterogeneity.金属空气污染物与乳腺癌异质性。
Environ Res. 2019 Oct;177:108639. doi: 10.1016/j.envres.2019.108639. Epub 2019 Aug 8.

本文引用的文献

1
Comparing ROC curves derived from regression models.比较回归模型得出的 ROC 曲线。
Stat Med. 2013 Apr 30;32(9):1483-93. doi: 10.1002/sim.5648. Epub 2012 Oct 3.
2
Comprehensive molecular portraits of human breast tumours.人类乳腺肿瘤的全面分子特征图谱。
Nature. 2012 Oct 4;490(7418):61-70. doi: 10.1038/nature11412. Epub 2012 Sep 23.
7
A strategy for distinguishing optimal cancer subtypes.区分最佳癌症亚型的策略。
Int J Cancer. 2011 Aug 15;129(4):931-7. doi: 10.1002/ijc.25714. Epub 2010 Nov 18.
10
Integrative genomic profiling of human prostate cancer.人类前列腺癌的综合基因组分析。
Cancer Cell. 2010 Jul 13;18(1):11-22. doi: 10.1016/j.ccr.2010.05.026. Epub 2010 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验