Suppr超能文献

活细胞中mCherry的荧光涨落光谱学。

Fluorescence fluctuation spectroscopy of mCherry in living cells.

作者信息

Wu Bin, Chen Yan, Müller Joachim D

机构信息

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Biophys J. 2009 Mar 18;96(6):2391-404. doi: 10.1016/j.bpj.2008.12.3902.

Abstract

The red fluorescent protein mCherry is of considerable interest for fluorescence fluctuation spectroscopy (FFS), because the wide separation in color between mCherry and green fluorescent protein provides excellent conditions for identifying protein interactions inside cells. This two-photon study reveals that mCherry exists in more than a single brightness state. Unbiased analysis of the data needs to account for the presence of multiple states. We introduce a two-state model that successfully describes the brightness and fluctuation amplitude of mCherry. The properties of the two states are characterized by FFS and fluorescence lifetime experiments. No interconversion between the two states was observed over the experimentally probed timescales. The effect of fluorescence resonance energy transfer between enhanced green fluorescent protein (EGFP) and mCherry is incorporated into the two-state model to describe protein hetero-oligomerization. The model is verified by comparing the predicted and measured brightness and fluctuation amplitude of several fusion proteins that contain mCherry and EGFP. In addition, hetero-fluorescence resonance energy transfer between mCherry molecules in different states is detected, but its influence on FFS parameters is small enough to be negligible. Finally, the two-state model is applied to study protein oligomerization in living cells. We demonstrate that the model successfully describes the homodimerization of nuclear receptors. In addition, we resolved a mixture of interacting and noninteracting proteins labeled with EGFP and mCherry. These results provide the foundation for quantitative applications of mCherry in FFS studies.

摘要

红色荧光蛋白mCherry在荧光涨落光谱学(FFS)中备受关注,因为mCherry与绿色荧光蛋白在颜色上有很大差异,为识别细胞内的蛋白质相互作用提供了绝佳条件。这项双光子研究表明,mCherry存在不止一种亮度状态。对数据进行无偏分析需要考虑多种状态的存在。我们引入了一个双态模型,该模型成功地描述了mCherry的亮度和涨落幅度。通过FFS和荧光寿命实验对这两种状态的特性进行了表征。在实验探测的时间尺度上未观察到两种状态之间的相互转换。将增强型绿色荧光蛋白(EGFP)与mCherry之间的荧光共振能量转移效应纳入双态模型,以描述蛋白质异源寡聚化。通过比较几种包含mCherry和EGFP的融合蛋白的预测亮度和涨落幅度与实测值,对该模型进行了验证。此外,还检测到了不同状态的mCherry分子之间的异源荧光共振能量转移,但其对FFS参数的影响小到可以忽略不计。最后,将双态模型应用于研究活细胞中的蛋白质寡聚化。我们证明该模型成功地描述了核受体的同二聚化。此外,我们解析了用EGFP和mCherry标记的相互作用和非相互作用蛋白质的混合物。这些结果为mCherry在FFS研究中的定量应用奠定了基础。

相似文献

1
Fluorescence fluctuation spectroscopy of mCherry in living cells.
Biophys J. 2009 Mar 18;96(6):2391-404. doi: 10.1016/j.bpj.2008.12.3902.
2
Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
Biophys J. 2009 Oct 21;97(8):2368-76. doi: 10.1016/j.bpj.2009.07.044.
3
Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15492-7. doi: 10.1073/pnas.2533045100. Epub 2003 Dec 12.
4
Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells.
Biophys J. 2006 Dec 1;91(11):4273-84. doi: 10.1529/biophysj.106.085845. Epub 2006 Sep 15.
5
Unraveling protein-protein interactions in living cells with fluorescence fluctuation brightness analysis.
Biophys J. 2005 Jun;88(6):4366-77. doi: 10.1529/biophysj.105.059170. Epub 2005 Apr 1.
6
Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
PLoS One. 2007 Oct 10;2(10):e1011. doi: 10.1371/journal.pone.0001011.
7
Optimal fluorescent protein tags for quantifying protein oligomerization in living cells.
Sci Rep. 2018 Jul 13;8(1):10634. doi: 10.1038/s41598-018-28858-0.
8
Pulsed interleaved excitation fluctuation imaging.
Biophys J. 2013 Aug 20;105(4):848-61. doi: 10.1016/j.bpj.2013.05.059.
9
Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins.
Anal Biochem. 2010 Jul 1;402(1):105-6. doi: 10.1016/j.ab.2010.03.026. Epub 2010 Mar 27.

引用本文的文献

1
Particle-based phasor-FLIM-FRET resolves protein-protein interactions inside single viral particles.
Biophys Rep (N Y). 2023 Aug 9;3(3):100122. doi: 10.1016/j.bpr.2023.100122. eCollection 2023 Sep 13.
2
Benchmarking of novel green fluorescent proteins for the quantification of protein oligomerization in living cells.
PLoS One. 2023 Aug 3;18(8):e0285486. doi: 10.1371/journal.pone.0285486. eCollection 2023.
3
Quantification of Dark Protein Populations in Fluorescent Proteins by Two-Color Coincidence Detection and Nanophotonic Manipulation.
J Phys Chem B. 2022 Oct 13;126(40):7906-7915. doi: 10.1021/acs.jpcb.2c04627. Epub 2022 Oct 3.
4
Partitioning of ribonucleoprotein complexes from the cellular actin cortex.
Sci Adv. 2022 Aug 19;8(33):eabj3236. doi: 10.1126/sciadv.abj3236.
5
Analysis and validation of silica-immobilised BST polymerase in loop-mediated isothermal amplification (LAMP) for malaria diagnosis.
Anal Bioanal Chem. 2022 Sep;414(21):6309-6326. doi: 10.1007/s00216-022-04131-2. Epub 2022 Jun 3.
6
Intracellular imaging of metmyoglobin and oxygen using new dual purpose probe EYFP-Myoglobin-mCherry.
J Biophotonics. 2022 Mar;15(3):e202100166. doi: 10.1002/jbio.202100166. Epub 2021 Nov 16.
7
Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation.
Nano Lett. 2021 Sep 8;21(17):7213-7220. doi: 10.1021/acs.nanolett.1c02178. Epub 2021 Aug 19.
9
Number and Brightness Analysis: Visualization of Protein Oligomeric State in Living Cells.
Adv Exp Med Biol. 2021;1310:31-58. doi: 10.1007/978-981-33-6064-8_2.

本文引用的文献

1
Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy.
Biophys J. 2008 May 15;94(10):4103-13. doi: 10.1529/biophysj.107.123596. Epub 2008 Jan 30.
2
Practical guidelines for dual-color fluorescence cross-correlation spectroscopy.
Nat Protoc. 2007;2(11):2842-56. doi: 10.1038/nprot.2007.410.
3
Recent advances in fluorescence cross-correlation spectroscopy.
Cell Biochem Biophys. 2007;49(1):1-13. doi: 10.1007/s12013-007-0042-5.
4
Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis.
Biophys J. 2007 Aug 1;93(3):1021-31. doi: 10.1529/biophysj.107.105494. Epub 2007 May 11.
5
Determining the stoichiometry of protein heterocomplexes in living cells with fluorescence fluctuation spectroscopy.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3147-52. doi: 10.1073/pnas.0606557104. Epub 2007 Feb 16.
6
A guide to accurate fluorescence microscopy colocalization measurements.
Biophys J. 2006 Dec 15;91(12):4611-22. doi: 10.1529/biophysj.106.089441. Epub 2006 Sep 29.
7
Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells.
Biophys J. 2006 Dec 1;91(11):4273-84. doi: 10.1529/biophysj.106.085845. Epub 2006 Sep 15.
9
Dual-color time-integrated fluorescence cumulant analysis.
Biophys J. 2006 Oct 1;91(7):2687-98. doi: 10.1529/biophysj.106.086181. Epub 2006 Jun 30.
10
A guide to choosing fluorescent proteins.
Nat Methods. 2005 Dec;2(12):905-9. doi: 10.1038/nmeth819.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验